[Paper Appeared in IEEE TVCG 5(1), 1999, pp. 30—46.]

On a Construction of a Hierarchy of Best Linear
Spline Approximations Using Repeated Bisection

Bernd HAMANN T:+:* Benjamin W. JORDAN ¥ and David F. WILEY T

Abstract

We present a method for the construction of hierarchies of single-valued functions in one,
two, and three variables. The input to our method is a coarse decomposition of the compact
domain of a function in the form of an interval (univariate case), triangles (bivariate case),
or tetrahedra (trivariate case). We compute best linear spline approximations, understood
in an integral least squares sense, for functions defined over such triangulations and refine
triangulations using repeated bisection. This requires the identification of the interval
(triangle, tetrahedron) with largest error and splitting it into two intervals (triangles,
tetrahedra). Each bisection step requires the re-computation of all spline coefficients due
to the global nature of the best approximation problem. Nevertheless, this can be done
efficiently by bisecting multiple intervals (triangles, tetrahedra) in one step and by reducing
the bandwidths of the matrices resulting from the normal equations.

Key words: Approximation; Bisection; Best approximation; Grid generation; Hierarchical
representation; Linear spline; Multiresolution method; Scattered data; Spline; Triangula-
tion; Unstructured grid; Visualization.

1. Introduction

Different methods are known and used for the hierarchical representation of very large
data sets. Unfortunately, only a small number of these methods are based on a well
developed mathematical theory. In the context of visualizing very large data sets in two
and three dimensions, it is imperative to develop hierarchical data representations that
allow us to visualize and analyze physical phenomena at various levels of detail. General,
robust, and efficient methodologies are needed to support the generation of hierarchical

f Department of Computer Science, University of California, Davis, CA 95616-8562,
USA

* Co-Director of the Center for Image Processing and Integrated Computing (CIPIC)

* Corresponding author; e-mail: hamann@cs.ucdavis.edu

Y Pizar Feature Division, Pizar Animation Studios, 1001 West Cutting Boulevard, Rich-
mond, CA 94804, USA

data representations and their applicability for the visualization process.

This paper deals with the construction of hierarchies of triangulations and best linear
spline approximations of functions. The main idea underlying the construction of a data
hierarchy is repeated bisection of intervals (triangles, tetrahedra). The coefficients asso-
ciated with each vertex in a triangulation are computed in a best approximation sense.
(We use the term triangulation to describe the general situation.) Whenever an interval
(a triangle/tetrahedron) is bisected, due to a large local error, one needs to compute new
linear spline coefficients for all vertices in the new, refined triangulation. It is possible to
efficiently perform the necessary matrix inversions due to the fact that the matrices are
generally very sparse which allows us to significantly reduce their bandwidths.

Over the past decade, the visualization community has developed various, often highly
specialized, hierarchical data representations given the increasing need for such represen-
tations. Triangulations are a good choice when complex data domains must be handled.
This is the reason why we are using triangulations for hierarchical data representation. Re-
cent work related to our approach and dealing with the approximation of large data sets is
discussed in [Agarwal & Desikan ’97], [Bonneau et al. 96|, [Cignoni et al. "94], [Dyn et al.
'90], [Eck et al. '95], [Gieng et al. '97, '98], [Gross et al. '95], [Grosso et al. ’97], [Hamann
'94], [Hamann & Chen 94|, [Hoppe ’96], [Nielson et al. ’97a], [Trotts et al. "98], and [Xia
& Varshney '96]. These papers discuss multi-level approximations of functions depending
on one, two, or three variables. We do not discuss the particular aspects when concerned
with the representation and manipulation of complex, general meshes/triangulations.

We describe an approach that applies to univariate, bivariate, and trivariate data.
The main principles of our approach become evident from the discussion of the univari-
ate case. By providing an in-depth discussion of the univariate case first, the necessary
generalizations for the bivariate and trivariate cases are understood more easily. We have
developed our method having the requirements for bivariate and trivariate visualization
in mind. Hierarchies of triangular and tetrahedral meshes provide the necessary flexibility
to discretize complicated domains, and visualization systems can handle such data rep-
resentations efficiently. Visualization techniques that are relevant in this context include
contouring, slicing, and volume visualization (ray casting) methods. The books [Hagen et
al. 93], [Kaufman '91], [Nielson et al. '97b], [Nielson & Shriver '90], and [Rosenblum et
al. ’94] provide an excellent overview of current visualization technology.

2. Overview of the technique

The generation of a hierarchical data representation should be viewed as a pre-processing
step of data visualization and analysis. It should be possible to directly utilize the data
format describing a data hierarchy in the visualization process. Visualization technology
and systems are capable of rendering triangulation-based data. Regarding the generation
of the hierarchy, speed is not the primary concern, as long as it is possible to construct
the hierarchy in reasonable time. It is important that the hierarchical representation
can describe arbitrarily complex domains and that error estimates can be computed for all
levels of the hierarchy. The main criteria that have influenced the design of our hierarchical
approximation technique are:

e Simplicity. The construction of a hierarchy of triangulations should be sim-
ple. The number of special cases to be considered should be small; a single
refinement step should cause minimal topological change; and the computa-
tions involved in the generation of best linear spline approximations should be
simple.

e Generality. The approach should be applicable to functions of any number
of variables; it should be possible to extend the approach to multi-valued func-
tions; and the approach should handle arbitrary, complicated regions.

e Efficiency. The computation of the hierarchy of triangulations should be
efficient.

e Applicability. The hierarchical data representation should consider the needs
of existing visualization technology. One should be able to directly apply known
visualization methods to the hierarchical data format.

A hierarchy of best linear spline approximations, based on domain triangulations of varying
resolution, seems to be a good choice.

The individual steps of our algorithm needed to compute such a hierarchical repre-
sentation for univariate, bivariate, and trivariate functions are:

i. Initial approximation. Define an initial, coarse triangulation of the func-
tion’s domain and, for all vertices, compute the coefficients defining the best
linear spline approximation.

ii. Error estimation. Analyze the error of this approximation by computing
appropriate global and local error estimates.

iii. Refinement. Identify the interval (triangle, tetrahedron) with largest local er-
ror estimate and bisect it (bisect its longest edge into two segments in the bivari-
ate and trivariate cases—thereby effectively bisecting all triangles/tetrahedra
sharing this edge). Bisection is illustrated in Fig. 1 for the bivariate and trivari-
ate cases.

iv. Computation of best approximation. Based on the updated vertex set
and updated triangulation, compute a new best linear spline approximation.

v. Iteration. Iterate steps ii, iii, and iv until a certain approximation error
condition is satisfied.

We discuss these steps in detail in the following sections.

Fig. 1. Bisecting triangle/tetrahedron (boldface lines indicating
original triangle/tetrahedron selected for bisection).

Remark 2.1. We point out that, in many practical applications, the function to be
approximated is only known at a finite number of random locations (scattered data). If
this is the case, we first compute an interpolant to the scattered data. We use a localized
version of Hardy’s multiquadric method 1, yielding a function interpolating the known
function values at the random locations. We interpret this scattered data interpolant as
the function for which an approximation hierarchy is to be constructed. For a survey
on scattered data approximation and interpolation techniques, including a description of
Hardy’s multiquadric method, see [Franke '82]. In fact, we assume that the function to
be approximated is the result of a previously performed (scattered) data approximation or
interpolation step. Thus, the number of original (scattered) data should impact the degree
of “complexity” of the function.

3. Best approximation and the univariate case

Our approach requires a few notions from linear algebra and approximation theory which
we discuss briefly in the following. We use the standard scalar product (f,g) for two
functions f(z) and g(x), defined over the interval [a, b],

b
(f.g) = / /(z) g(x) de, 1)

1 There are several advantages to using Hardy’s multiquadric approximation method,
the main ones being smoothness of the approximation and ease of computation.

4

and the standard Ls norm to measure a function f(z),

b

1/2
Il = (f, HV? = (/(f(x))zdar> : (2)

a

Remark 3.1. As an alternative, one might consider an interval-weighted scalar product
for two functions f and g by dividing the right-hand side of (1) by (b — a). This might
potentially eliminate the influence of interval length when computing interval-specific er-
ror estimates. It is our experience that performing this “normalization” does not lead
to a hierarchical representation whose visual appearance is significantly different (keep-
ing the number of knots similar in both representations). Therefore, we do not perform
“normalization” to obtain better computational efficiency.

It is well known from approximation theory, see e.g., [Davis ’75], that the best ap-
proximation 2 of a function F', when approximating it by a linear combination Z?:_ol cifi

of independent functions fy, ..., f,._1, is defined by the normal equations
(fosfo) oo (fa-1,fo) Co (F, fo)
s z)= | (3)
(fos fn=1) - (fn=1, fu-1) Cn—1 (F, fn-1)

We also write this linear system as M~ c*=1 = Fl*~1 This system is easily solved
when dealing with a set of mutually orthogonal and normalized basis functions, i.e.,
(fi, f;) = 0ij (Kronecker delta). In this case, only the diagonal elements of M =11 are
non-zero, and the coefficients ¢; are given by ¢; = (F, f;). For an arbitrary set of basis
functions f; one has to investigate means for the efficient solution of the linear system or
use a basis leading to sparse matrices M[»—11,

We are concerned with the computation of a hierarchy of best approximations of a
given function F'. More specifically, we are interested in a construction of a hierarchy of
best linear spline approximations of F' by increasing the number of basis functions—or,
in other words, the number of knots. We increase the number of knots one-by-one until
a best approximation is obtained whose associated error is smaller than some threshold.
From the set of all best linear spline approximations to F' we eventually select a subset
consisting of those splines that we can associate with a particular level of an approximation
hierarchy.

In general, the computation of a best linear spline approximation of a function F'is an
optimization problem, which, when also allowing variable knot locations, is quite involved,
see [Cantoni ’71], [Stone ’61], and [Tomek ’74]. Considering variable knot locations is
a subject for future investigations. Our current approach does not permit variable knot
locations, it is solely based on repeated bisection, i.e., intervals (triangles and tetrahedra in
the bivariate and trivariate cases). This approach is computationally much less expensive
than the general, “knot selection,” problem. Our bisection approach essentially requires
two steps:

2 We understand best approzimation in an integral least squares sense.

5

e Error computation. One computes error estimates for each interval (triangle,
tetrahedron) in a particular best linear spline approximation and determines
the one with largest error.

e Bisection. The midpoint (of the longest edge) of the interval (triangle, tetra-
hedron) with largest error is inserted as an additional vertex. (All trian-
gles/tetrahedra sharing this edge are bisected as well.) A new best linear
spline approximation is computed for the new vertex set.

Initially, we approximate a univariate function F' by a single linear spline segment
by computing MHell = F[U. We assume, unless specified otherwise, that F is defined
over the interval [0,1] and that the basis functions f; are hat functions, linear spline
basis functions with the property fi(z;) = d;;, see Fig. 2. The resulting initial error is
EN = ||F — (cofo + c1f1)|]. If this value is larger than a specified threshold, we refine
the approximation by inserting an additional knot at x = % (The insertion of this knot
changes the knot sequence, and therefore the hat basis functions change.) We compute a
new best approximation by solving M#cl?l = FI2I for the new set of basis functions and
obtain the new error value E[? = HF — Z?:o Ci sz Should this error still be too large,
we need a criterion that allows us to decide which segment to bisect. Since our method
is based on repeated bisection of individual segments, we consider segment-specific, local
errors associated with the intervals [0, %] and [%, 1].

f(x) A F

Cofo + C4fy

I I = X
0 1

Fig. 2. Basis functions f;, function F', and F’s best approximation.

At this point, we introduce notions that allow us to describe the refinement process
for a general intermediate knot sequence. We assume that the current approximation is

6

based on the knot sequence 0 = 2y < 1 < T3 < ... < Tp_2 < Tr_1 = 1 and that the
coefficient vector associated with the hat basis functions f; is (co, ..., ck_l)T. We define

the global error as
k—1

F-Y af;

=0

E[k—l] _

‘. (4)

In order to determine the interval [z;,2;11] to be subdivided next, we define segment-
specific, local errors as

Tit1 1/2
el = (/ (F — (cifi+ C¢+1fi+1))2 d$> ,o =0,k —2 (5)

Tq

We compute the local error values for each segment and bisect the segment with largest
local error value. If there are multiple segments with the same maximal error value, we
randomly pick one of them to be bisected. (It is of course possible to bisect all segments
with the same maximal error in one step, thus leading to a unique answer.) One could
generalize this approach by selecting more than just one segment for refinement, e.g., one
could simultaneously bisect the m segments with the m largest local error values. Such
an approach seems appropriate when dealing with extremely large data sets leading to
extremely complicated functions F' to be approximated.

When using hat functions as basis functions, the only non-zero elements of MF=11 for
a particular row 4, are the elements (f;_1, fi), (fi, fi), and (f;11, fi). These scalar products
are given by

(fi—1, fi) = %Ai—h
(fir fi) = % (Di—1+24), and (6)
(fir1, fi) = éﬁi,

where A; = x4 — x;. Thus, M= i5 the tridiagonal matrix

2o JANY
No 2(Do+ Aq) VAN
M[k—l] — é Al Q(Al +A2) Az . (7)

Ap_o 20p_s
This allows us to compute each best linear spline approximation in linear time. It is
necessary, due to the global nature of the problem, to re-compute all components of the
coefficient vectors (co, c1, co,...)T whenever one inserts a knot. An “insert-knots-one-by-

one” approach is thus a fairly inefficient approach when several thousand knots are required
to obtain a “good” approximation.

The scalar products (F, f;) and the error values F and egk_l] are computed by

numerical integration. We use Romberg integration, see [Boehm & Prautzsch ’93] and
[Hammerlin & Hoffmann ’91]. We review Romberg integration and describe our specific
numerical integration schemes for the bivariate and trivariate cases in the Appendix.

(k—1]

Remark 3.2. We plan to devise a more efficient method that inserts multiple knots
simultaneously. Such a method should relate the locations and the number of new knots
to be inserted to the “local complexity” of F', the local error behavior of F'.

When does one associate a certain best linear spline approximation with a particular
level? Given an error tolerance tuple E = (eq, ..., €m—1), € > €541, We associate a best
approximation with approximation level j when its associated global error lies in the
interval (ejy1,€;]. A best linear spline approximation associated with level j is called
the representative of level j if its number of knots (vertices) is minimal among all level-j
approximations 3. Often, one is interested only in a best approximation whose associated
global error is below a certain threshold. This is the reason why we use the concept
of the representative approximation—the approximation with minimal number of knots
satisfying a level-specific upper threshold—and store only the representatives. It would
also be impractical, if not impossible for large data sets, to store all the linear splines
resulting from all individual bisection steps #. (The univariate case is discussed in depth
in [Hamann & Jordan '98].)

4. The bivariate case

We proceed similarly in the bivariate case. Given an initial best linear spline approxi-
mation based on a small number of triangles, possibly just one, we compute the global
approximation error of the associated best linear spline approximation and, should this
error be too large, insert the midpoint of the longest edge of the triangle with largest local
error as a new knot. In general, the principle of edge bisection leads to the split of one or
two triangles—depending on whether the bisected edge is shared by a second triangle or
not.

A bisection step leads to a new triangulation for which we compute a new best linear
spline approximation. Bisection terminates when a certain global error condition is met.
If the triangle with largest local error has more than one edge with maximal length, we
choose to bisect, randomly, one of the edges with maximal length. (Alternatively, one
could choose to split multiple edges simultaneously to guarantee uniqueness.) If multiple

3 In practice, we refine an intermediate linear spline until we obtain a spline whose
associated global error is smaller than or equal to ¢;. In order to construct a level-j linear
spline with a minimal number of knots, obtained by repeated bisection, one would have
to solve a multidimensional optimization problem for the determination of a sequence
consisting of a minimal number of bisection steps. We do not determine this optimal
sequence. Instead, we perform only one sequence of bisection steps and store, for each
level j, the first generated linear spline whose global error is smaller than or equal to ¢;.

4 Tt is possible that our construction does not produce a linear spline whose global error
lies in the interval (ej41,€;]. This is due to the fact that a single bisection step might
reduce the global error drastically—but this has no severe consequences.

8

triangles share the maximal local error value, we choose, randomly, one of these triangles
to be bisected. (Again, one could choose to bisect larger triangles first—or vice versa—or
choose to simultaneously split all triangles sharing the maximal local error value.) Bisecting
the m triangles with the m largest local errors is more appropriate when dealing with very
large data sets.

We describe the construction of a hierarchy of best linear (also called triangular)
spline approximations of functions F(x,y) defined over arbitrary triangulations. The union
of the triangles in the initial triangulation defines the region in the plane over which we
apply our refinement scheme. It is assumed that the boundary of the domain of interest
is approximated well enough by the coarsest, initial triangulation. When dealing with
scattered data we suggest to consider a triangulation of the data points defining the convex
hull, the “natural boundary,” as the initial triangulation. We introduce some necessary
notions next.

Denoting the vertex (knot) set of an intermediate approximation by {v; = (z;, ;)T |i =
0,....k — 1} and the coefficient vector associated with the hat basis functions by f; is
(coy ...y c—1)T, the global error is

Bl —

k-1
F=Y cifi
i=0

The triangle-specific, local errors for each triangle T} are given by

‘- (8)

1/2
eg.k_l] = (/(F - spline_over_Tj))2 da:dy) , Jj=0,.,np—1, 9)
T

where np is the number of triangles.

Assuming that there are m vertices in the initial, coarsest triangulation, we compute
the first best linear spline approximation by solving Mm—1l¢m—11 = glm—1], (Each vertex
has an associated hat function and thus an associated spline coefficient.) The initial error
is Elm—1 = HF — E;T;Bl Ci le If this value is larger than a prescribed tolerance, we
insert an additional knot at the midpoint of the longest edge of the triangle with largest
local error—thereby altering, locally, the set of hat basis functions. We compute a new
best approximation by solving M[™lcl™l = Fl™] and stop when a best approximation is
obtained that satisfies a global error condition. Due to the fact that our basis functions
have compact support, the insertion of a new knot implies the computation of only a few
new scalar products. Therefore, we store the matrices describing the normal equations of
a previous level for efficiency.

In the bivariate setting one must determine the local errors by considering the differ-
ence between F' and an intermediate best linear approximation over each triangle. Fig. 3
shows a function F, the hat functions, and F’s best approximation (single-triangle case).

Remark 4.1. Data-dependent triangulation schemes use the approximation error as pri-
mary criterion to decide how to triangulate a function’s domain, see, e.g., [Dyn et al. '90].
Instead of always bisecting a triangle’s longest edge one could choose to bisect a triangle in

9

such a way that the new global approximation error is minimized. Thus, in the bivariate
case, one would have to consider three possible bisections.

Remark 4.2. Our algorithm does not include solving the following problem: Given a
particular error bound, how can one construct an approximation with a minimum number
of nodes that satisfies the error bound? This is an interesting and challenging problem,
and one solution approach is described in [Agarwal & Desikan '97].

- N ”’

/ -
~ S, N -

.\\\\\\\\\\\\\\X\\m \\X&&&\\

SN\

&mx T T Ty

Fig. 3. Basis functions f;, function F', and F’s best approximation.

The solution of the normal equations, considering k£ knots, requires the inversion of a
matrix M1, The number of non-zero entries per column in M~ is implied by the
valences of the vertices in the triangular mesh. A vertex v; having valence v; causes vy +1
non-zero entries in column ¢. In principle, the valences are unlimited, and one can obtain
large numbers of non-zero elements in certain columns of M*~1. Thus, the computation
of the spline coefficients in the bivariate case can, in principle, be much more expensive
than in the univariate case.

Remark 4.3. Efficiency is a concern when performing a bisection step for a triangulation
consisting of a large number of vertices. Each bisection step requires the re-computation
of the coefficients for all vertices, involving the (efficient) inversion of a banded matrix.
The matrix M¥*—11 is sparse, i.e., relatively few matrix entries are different from zero. Un-
fortunately, the non-zero elements are scattered throughout the matrix and their locations
depend on the indexing of the vertices in the triangulation. Finite element problems result
in the same problem, inverting sparse matrices efficiently, see e.g., [Zienkiewicz '77]. Al-

10

gorithms have been developed for the “compression” of sparse matrices by reducing their
bandwidths. These algorithms determine a (nearly) optimal indexing scheme for the ver-
tices such that the resulting matrices have (nearly) minimal bandwidths. The results of
such algorithms are matrices where the non-zero elements are closely “packed” in a small
number of bands close to the main matrix diagonal, see [Cuthill & McKee '69], [Gibbs et
al. ’76], and [Rosen '68]. We use the graph-based Cuthill-McKee algorithm to generate
vertex indices leading to small-bandwidth matrices.

Remark 4.4. A lower bound for the bandwidth that one can achieve when applying any
type of bandwidth-reducing strategy is defined by the vertex with maximal valence. In
principle, arbitrarily high vertex valences can result from repeated bisection. One might
therefore consider imposing threshold on maximal vertex valence.

Remark 4.5. Repeated bisection of longest triangle edges seems to lead to acceptable
triangulations in the sense that the geometrical properties of the resulting triangles do not
rapidly deteriorate to long, skinny triangles. This is an important observation considering
that most visualization techniques are numerically very sensitive to triangle shape. In
principle, arbitrarily skinny triangles can result from repeated bisection. Therefore, one
should incorporate a constraint into the algorithm that prohibits the generation of triangles
whose geometrical qualities are below a certain threshold. In our current implementation
we do not impose any constraints limiting the shape of triangles. Our approach seems to
favor the generation of equilateral triangles over skinny triangles overall, and it would be
an interesting topic for future research why this is the case.

The bivariate case requires integration over triangles. For this purpose we utilize
the change-of-variables theorem which allows us to effectively integrate functions over a
triangle with vertices vo = (7o, y0)?, vi = (z1,91)T, and vy = (w9, y2)T.

Change-of-variables theorem. Let R and R* be regions in the plane and let M : R* —
R be a C'-continuous, one-to-one mapping such that M (R*) = R. Then, for any bivariate
integrable function f, the equation

/f(a:,y) drdy = /f(a:(u,v),y(u,v)) J dudv (10)

holds, where .J is the Jacobian of M,
9 A
J — det < 83“/;(11/,1)) %m(uyv)> . (11)

Thus, we can effectively compute integrals of functions defined over triangles. We
only need to consider the linear transformation

<x(u,v)> _ (xl—xo xz—x()) (u>+<x0>_ (12)
y(u,v) Y1—Y% Y2—Y) \v Yo
This transformation maps the standard triangle T* with vertices ug = (0,0)T, u; = (1,0)7,

and uy = (0,1)T in the uv-plane to the arbitrary triangle 7' with vertices vo = (o, 90)7,

11

vi = (z1,71)T, and vy = (72,92)T in the xy-plane. (Both triangles must be oriented

counterclockwise.) For this linear mapping the change-of-variables theorem yields

1 1-v
[ty doty = 3 [[fotw0).pta0) dudo, (13)
T v=0 u=0
and the Jacobian is given by
J = det(“’l_‘”‘) xz—x()) (14)
Y1—Y% Y2—Y%)

The only scalar products of basis function pairs one must consider in the bivariate
case are (No, No) and (Ny, N1), where N;(u;,v;) = 6;; is a linear spline basis function
defined over the standard triangle. (A scalar product (f;, f;) is different from zero only if
the platelets of the vertices v; and v; have a non-zero area intersection.) The values of
these two scalar products are

1 1-w
1
(Ng, No) = / / (1—u—v)? dudv = D and
v=0 u=0
1 1-w 1
(No, Ny) = / /(l—u—v) wdudo= . (15)
v=0 u=0

A hat function f; associated with vertex v; is the linear spline basis function whose function
value at v; is one and whose function value at all other vertices is zero; the function f;
varies linearly between zero and one over all triangles defining v;’s platelet, see Fig. 4.
(The platelet of vertex v; is the set of all triangles sharing v; as a common vertex.)

12

Fig. 4. Platelets of v; and v; and associated basis functions.

Thus, the scalar product (f;, f;) is given by

n;—1 n;—1

1
sy = % [figasty = 35 3" 5, (16)

0 T; 7=0

where n; is the number of platelet triangles associated with vertex v;, and J; is the Jacobian
associated with the j-th platelet triangle. (The platelet of triangles associated with vertex
v; is assumed to be the set of triangles 7; = {T} }?;61.) The scalar product (f;, fx) of two
basis functions whose associated vertices v; and vy are connected by an edge is given by

Njk—

1
Und) = X [fi fedsdy = 50 3 a7)
1=0 T, 1=0

njk—1

(The set T; 1 = {Ti}?;’g_l is the set of triangles belonging to both v;’s and v} ’s platelets.)
All triangles must be oriented counterclockwise. We transform each triangle in v;’s platelet
to the standard triangle such that v; is mapped to ug and transform each triangle in v;’s
platelet to the standard triangle such that v; is mapped to u;. This is the reason why
one only needs to consider the scalar product (Ng, Ny).

5. The trivariate case

The trivariate case is a rather straightforward generalization of the bivariate case. In the
context of scientific visualization, the trivariate case is probably the most important one.
The generalization to the trivariate case is simply done by replacing the notion of triangle
by the notion of tetrahedron. The basic idea of applying repeated bisection remains the

13

same. We bisect tetrahedra according to their local errors and compute best linear spline
approximation using hat basis functions defined over tetrahedral platelets, see Fig. 5. The
computation of scalar products and errors requires integration over tetrahedral domains,
see Appendix.

Fig. 5. Tetrahedral platelet of v; consisting of eight tetrahedra.

We only discuss the implications of the change-of-variable theorem for tetrahedral
meshes, which is important in the context of computing the required scalar products of
functions defined over tetrahedral domains. We consider the transformation mapping
the standard tetrahedron with vertices ug = (0,0,0)T, u; = (1,0,0)7, uy = (0,1,0)%,
and uz = (0,0,1)T in wvw-space to the tetrahedron with vertices vo = (20,0, 20)7,
Vi = (371,?/1721)T7 Vo = (352,?/2722)T7 and vy = (3737?!3723)T in zyz-space. The resulting
linear transformation is thus given by

z(u,v) T1—To Toa—To T3— Tp U Zo
y(w,v) | = | v1—% Y2—% Y3~ Yo v |+ % |- (18)
z(u,v) 21— 20 %2 — 20 23— 20 w 20

In this case, the change-of-variables theorem implies that

/

l-w 1—v—w
v=0

1
/f(ac,y,z) dedydz = J / / f(x(u,v,w),y(u,v,w),z(u,v,w)) dudvdw,
T w=0 u=0

where the Jacobian is given by

(19)

ri1 —Tp T2 —To I3 —To

J =det | y1—v0 Y2—% Ys—% |- (20)
21— 20 %2 —2) R3— %20

Using the same argument as in the bivariate case, the only scalar products one needs
are (No, No) and (N, N1), where N;(uj,v;) = 0; ; is a linear spline basis function over the

14

standard tetrahedron. The values of these two scalar products are

1 l-w 1—v—w
1
<N07N0> = / / / (1—u—v—w)2 dudvdw = % and
w=0 v=0 u=0
1 l—-w 1—v—w .
(No, N1) = / / / (1—u—v—w)ududvdw = 120" (21)
w=0 v=0 u=0

Remark 5.1. The d + 1 vertices of the standard simplex in d-dimensional space are
(0,0,0,...,00, (1,0,0,...,00T, (0,1,0,...,0), (0,0,1,...,0)7, ..., and (0,0,0,...,1)T, where
each point has d coordinates. One proves by induction that

2
<N(),N()> = (d—f-2)' and
(No, Ny) = (d+12)!' (22)

This is of interest in the multivariate case.

6. Examples

We have tested our approach for univariate, bivariate, and trivariate test functions. In the
univariate case, we start with a single interval, the interval [0,1]. In the bivariate case,
we have used the unit square [0, 1] % [0, 1] and defined the initial triangulation by splitting
the square into the two triangles obtained by connecting (0,0)T and (1,1)T. The initial
triangulation in the trivariate case is the unit cube [0,1] x [0,1] x [0, 1], split into five
tetrahedra, see Fig. 6.

Table 1 lists, for bivariate and trivariate test functions, global error estimates® and
number of knots (in square brackets).

t

Fig. 6. Initial triangulation in trivariate case: unit cube split into five tetrahedra.

5 The global error estimates are based on equation (8).

15

Table 1. Global errors and numbers of knots for approximations of test functions.

xz? + 92 10x (:U — i) (:U — %)y2 20 4 ¢10 % sin(47rx2) cos (27Ty2)
0.09428][4] 0.17892[4] 0.19691[4] 0.24133]4]

0.04501[6] 0.07340[8] 0.09896[12] 0.12099[34]
0.02209[10] 0.04321[9] 0.05048[23] 0.05869[75]
0.01109[16] 0.02336[16] 0.02395[37] 0.03304[109]
0.00571[27] 0.01009[38] 0.01117[71] 0.01566[207]
0.00267[52] 0.00574[58] 0.00599[107] 0.00696[391]
0.00136[96] 0.00267[129] 0.00312[217] 0.00370[759]
0.00067[180] 0.00126[237] 0.00156[334] 0.00183[1415]
0.00034[355] 0.00066[485] 0.00079[756]

0.00033[871] -
x? +y? + 22 10:U(i) (:U — %) o104 y10 4 210 sin(lwaQ) cos(57ry2)
y:/z sin (272)

0.0993(8] 0.1374[8] 0.2399(8] 0.2959[374]
0.0508[15] 0.0694[20] 0.1172[31] 0.1924[1855]
0.0252[43] 0.0346[40] 0.0605[126] 0.0961[7048|
0.0169[121] 0.0177[118] 0.0329[257] -

- 0.0080[358] 0.0161[832 -

- 0.0041[1053] -

0.4(z% — y? — 2?) e 3 (=407 +2) Skull Flame

0.0508(8] 0.030018] 0.0919[990] 0.2370[8]

0.0259[18] 0.0164[15] 0.0665[3121] 0.1213[68]

0.0127[38] 0.0100[93] 0.0399[9776] 0.0643[959]
0.0065[107] - - 0.0335[5145]
0.0039[518] - - -

16

Figs. 7-16 show approximations for univariate, bivariate, and trivariate functions (and
real-world trivariate data) ¢. Concerning the generation of the triangulation levels in the
bivariate and trivariate cases, we have inserted multiple knots in a single refinement step
by identifying the approximately 10% triangles/tetrahedra with largest local errors and
bisecting them simultaneously, i.e., inserting multiple knots in one step.

In each figure, the image in the upper-left corner is a high-resolution rendering of the
original function to be approximated. Univariate functions (Figs. 7 and 8) are rendered

as graphs (z, f(x))T. (The squares in Figs. 7 and 8 indicate the region [0,1] x [—1,1].)

Bivariate functions (Figs. 9 and 10) are rendered as graphs (a:, y, f(z, y))T. They are flat-
shaded. The underlying triangulations are shown in the xy-plane. (The cubes in Figs. 9-16
indicate the region [0, 1] x [0,1] x [0,1]. The pair of perpendicular line segments shown
in some of the figures indicates the origin.) The global error estimate sequences in the
figure captions of Figs. 9-14 are based on the equations (2), (4), and (8). (The global error
definition for the trivariate case is a straightforward generalization of equation (8).) The
numbers in square brackets are the numbers of knots of the specific approximations.

Figs. 11-14 show trivariate examples. We have rendered the trivariate functions by
sets of planar slices “cutting” through the underlying tetrahedral meshes. The slices are
shaded according to function values. Fig. 13 shows approximations of a computerized axial
tomography (CAT) data set of a human skull (64 x 64 x 68 = 278, 528 normalized data on
a rectilinear grid), and Fig. 14 shows approximations of a flame data set (130 x 80 x 20 =
208, 000 normalized data on a rectilinear grid). Errors are computed with respect to the
original normalized, discrete data sets. Figs. 15 and 16 are renderings of the same data
sets used for Figs. 13 and 14. We have used a ray casting algorithm for tetrahedral meshes
to generate Figs. 13 and 14.

Remark 6.1. We note that the described hierarchy-generating algorithm is computation-
ally quite expensive, both with respect to time and space requirements. This is primarily
due to the fact that one has to perform numerical integration, matrix bandwidth optimiza-
tion, and solve linear equation systems to generate an approximation hierarchy. We have
implemented our algorithm on an SGI Indigo? graphics workstation, and the construction
of the hierarchies for the most complicated trivariate examples, which consist of several
thousand knots at the highest levels of resolution, requires several minutes of computation.
We believe that this is acceptable: Interactive visualization of very large data sets is only
possible if one has pre-computed a hierarchy prior to the rendering and data analysis steps.

6 In the case of the real-world trivariate data sets—the skull and the flame data sets—
we use a piecewise trilinear interpolant to “evaluate” these scalar fields. Such an analytical
definition is needed to compute the required integral expressions involved in the computa-
tion of inner products and errors.

17

(J 4

I
Fig. 7. Five approximations of F(z) = 10z(z —) (z — 2)

(no. of knots in approximations: 4, 6, 8, 14, 19).

-
il

Fig. 8. Five approximations of F(z) = sin(167z?)
(no. of knots in approximations: 8, 14, 24, 33, 52).

() &

[

==

18

T
T
V2,

R
LA
N)

\

Fig. 9. Five approximations of F(z,y) = 10z(z —) (z — 3)y?

(errors: 0.1789[4], 0.0234[16], 0.0057[58], 0.0011[267], 0.0002[1241]).

19

A A\ e

Fig. 10. Five approximations of F'(z,y) = 0.5 sin (47?) cos (2my?)
(errors: 0.2413[4], 0.1977[16], 0.0772[61], 0.0116[271], 0.0018[1415)).

20

u
u

N

1 3

Fig. 11. Three approximations of F(z,y, z) = 10x (a: — Z) (x — —) y3\/z
(errors: 0.0346[40], 0.0093[289], 0.0029[2617)).

21

4

N AN

Fig. 12. Three approximations of F(z,y, z) = sin(10mz?) cos(5my?) sin(272)
(errors: 0.2824[482], 0.1924[1855], 0.0961[7048)).

22

Fig. 13. Three approximations of skull data (orig. no. of vertices: 278,528)
(errors: 0.1087[326], 0.0794[1775], 0.0399[9776)).

23

Fig. 14. Three approximations of flame data (orig. no. of vertices: 208,000)
(errors: 0.1213[68], 0.0756[514], 0.0335[5145)).

24

Fig. 15. Ray casting applied to skull data set
(same approximations as used for Fig. 13).

25

Fig. 16. Ray casting applied to flame data set
(same approximations as used for Fig. 14).

26

7. Conclusions and future work

We have presented a method for the generation of hierarchies of best linear spline approxi-
mations for univariate, bivariate, and trivariate functions using hat functions as spline basis
functions in all dimensions. The approach is sound, general, robust, and fairly efficient.
One should view the process of constructing a data hierarchy as a pre-processing step for
subsequent data visualization. From this point of view the construction of the hierarchy
does not necessarily have to be an extremely fast operation. A hierarchy-generating algo-
rithm serves its purpose as long as the resulting data hierarchy provides a compact and
simple data format at increasing levels of detail that is usable by visualization system:s.
This is the case for our method.

We plan to improve the efficiency of our approach and generalize the approach to
allow more general subdivision schemes and variable knot placement. Such a generalization
would most likely produce very good approximations requiring fewer knots. Furthermore,
we plan to extend our approach to multi-valued functions, in particular bivariate and
trivariate vector fields. We have not yet studied the theoretical aspects concerning the
approximation properties of our scheme, e.g., the rate of decay of the global error measure
for certain classes of functions. This interesting and challenging work remains to be done.
Several numerical methods exist for efficiently solving the normal equations. Such methods,
including the conjugate gradient method, take advantage of the band structure of the
system of normal equations and its good condition number. We recommend to use such
methods when utilizing our scheme for applications of considerable size.

We have only discussed how to generate unstructured mesh hierarchies but not how
to store them appropriately in the context of subsequent data visualization and analysis.
In general, it is not possible to store an entire hierarchy in main computer memory, and
it is therefore necessary to store the hierarchy in a file format that supports easy and
efficient access. We believe that an optimal format to store a data hierarchy depends on
the particular visualization and analysis algorithms that are used. An optimal file format
is application-dependent, and one should design it on a case-to-case basis.

8. Acknowledgements

This work was supported by the National Science Foundation under contract ACI 9624034
(CAREER Award), the Office of Naval Research under contract N00014-97-1-0222, the
Army Research Office under contract ARO 36598-MA-RIP, the NASA Ames Research
Center through an NRA award under contract NAG2-1216, the Lawrence Livermore Na-
tional Laboratory through an ASCI ASAP Level-2 under contract W-7405-ENG-48 (and
B335358, B347878), and the North Atlantic Treaty Organization (NATO) under contract
CRG.971628 awarded to the University of California, Davis. We also acknowledge the
support of Silicon Graphics, Inc., and thank the members of the Visualization Thrust at
the Center for Image Processing and Integrated Computing (CIPIC) at the University of
California, Davis.

27

References

Agarwal, P. K. and Desikan, P. K. (1997), An efficient algorithm for terrain simplification,
in: Proceedings of the 8th ACM/SIGACT-SIAM Symposium on Discrete Algorithms
(SODA ’97), Association for Computing Machinery, New York, NY, pp. 139-147.

Barnhill, R. E. and Little, F. F. (1984), Adaptive triangular cubatures, The Rocky Moun-
tain Journal of Mathematics 14(1), pp. 53-75.

Boehm, W. and Prautzsch, H. (1993), Numerical Methods, A K Peters, Ltd., Wellesley,
MA.

Bonneau, G. P., Hahmann, S. and Nielson, G. M. (1996), BLaC-wavelets: A multiresolution
analysis with non-nested spaces, in: Yagel, R. and Nielson, G. M., eds., Visualization
96, IEEE Computer Society Press, Los Alamitos, CA, pp. 43—48.

Cantoni, A. (1971), Optimal curve fitting with piecewise linear functions, IEEE Transac-
tions on Computers C-20(1), pp. 59-67.

Cignoni, P., De Floriani, L., Montani, C., Puppo, E. and Scopigno, R. (1994), Multires-
olution modeling and visualization of volume data based on simplicial complexes, in:
Kaufman, A. E. and Kriger, W., eds., 199/ Symposium on Volume Visualization, IEEE
Computer Society Press, Los Alamitos, CA, pp. 19-26.

Cuthill, E. and McKee, J. (1969), Reducing the bandwidth of sparse symmetric matrices,
in: Proceedings of the ACM National Conference, Association for Computing Machin-
ery, New York, NY, pp. 157-172.

Davis, P. J. (1975), Interpolation and Approximation, Dover Publications, Inc., New York,
NY.

Dyn, N., Levin, D., and Rippa, S. (1990), Algorithms for the construction of data depen-
dent triangulations, in: Mason, J. C. and Cox, M. G., eds., Algorithms for Approxima-
tion II, Chapman and Hall, New York, NY, pp. 185-192.

Eck, M., DeRose, A. D., Duchamp, T., Hoppe, H., Lounsbery, M. and Stuetzle, W. (1995),
Multiresolution analysis of arbitrary meshes, in: Cook, R., ed., Proceedings of SIG-
GRAPH 1995, ACM Press, New York, NY, pp. 173-182.

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Math. Comp. 38,
pp- 181-200.

Gibbs, N. E., Poole, W. G. and Stockmeyer P. K. (1976), An algorithm for reducing the
bandwidth and profile of a sparse matrix, STAM J. Numer. Anal. 13(2), pp. 236-250.

Gieng, T. S., Hamann, B., Joy, K. I., Schussman, G. L. and Trotts, I. J. (1997), Smooth
hierarchical surface triangulations, in: Yagel, R. and Hagen, H., eds., Visualization 97,
IEEE Computer Society Press, Los Alamitos, CA, pp. 379-386.

Gieng, T. S., Hamann, B., Joy, K. I., Schussman, G. L. and Trotts, I. J. (1998), Construct-
ing hierarchies for triangle meshes, IEEE Transactions on Visualization and Computer
Graphics 4(2), pp. 145-161.

Gross, M. H., Gatti, R. and Staadt, O. (1995), Fast multiresolution surface meshing, in:
Nielson, G. M. and Silver, D. eds., Visualization 95, IEEE Computer Society Press,
Los Alamitos, CA, pp. 135-142.

Grosso, R., Liirig, C. and Ertl, T. (1997), The multilevel finite element method for adaptive
mesh optimization and visualization of volume data, in: Yagel, R. and Hagen, H., eds.,
Visualization 97, IEEE Computer Society Press, Los Alamitos, CA, pp. 387-394.

28

Hammerlin, G. and Hoffmann, K.-H. (1991), Numerical Mathematics, Springer-Verlag,
New York, NY.

Hagen, H., Miiller, H. and Nielson, G. M., eds. (1993), Focus on Scientific Visualization,
Springer-Verlag, New York, NY.

Hamann, B. (1994), A data reduction scheme for triangulated surfaces, Computer Aided
Geometric Design 11(2), Elsevier, pp. 197-214.

Hamann, B. and Chen, J. L. (1994), Data point selection for piecewise linear curve ap-
proximation, Computer Aided Geometric Design 11(3), pp. 289-301.

Hamann, B. and Jordan, B. W. (1998), Triangulations from repeated bisection, in: Dahlen,
M., Lyche, T. and Schumaker, L. L., eds., Mathematical Methods for Curves and Sur-
faces II, Vanderbilt University Press, Nashville, TN.

Hoppe, H. (1996), Progressive meshes, in: Rushmeier, H., ed., Proceedings of SIGGRAPH
1996, ACM Press, New York, NY, pp. 99-108.

Kaufman, A. E., ed. (1991), Volume Visualization, IEEE Computer Society Press, Los
Alamitos, CA.

Nielson, G. M., Jung, I.-H. and Sung, J. (1997a), Haar wavelets over triangular domains
with applications to multiresolution models for flow over a sphere, in: Yagel, R. and
Hagen, H., eds., Visualization ’97, IEEE Computer Society Press, Los Alamitos, CA,
pp. 143-149.

Nielson, G. M., Miiller, H. and Hagen, H., eds. (1997b), Scientific Visualization: Overviews,
Methodologies, and Techniques, IEEE Computer Society Press, Los Alamitos, CA.
Nielson, G. M. and Shriver B. D., eds. (1990), Visualization in Scientific Computing, IEEE

Computer Society Press, Los Alamitos, CA.

Rosen, R. (1968), Matrix bandwidth minimization, in: Proceedings of the ACM Na-
tional Conference, ACM publication no. P-68, Brandon Systems Press, Princeton, NJ,
pp- 585-595.

Rosenblum, L. J, Earnshaw, R. A., Encarnacgao, J. L., Hagen, H., Kaufman, A. E.,
Klimenko, S., Nielson, G. M., Post, F. and Thalmann, D., eds. (1994), Scientific
Visualization—Advances and Challenges, IEEE Computer Society Press, Los Alami-
tos, CA.

Stone, H. (1961), Approximation of curves by line segments, Mathematics of Computation
15, pp. 40-47.

Tomek, I. (1974), Two algorithms for piecewise-linear continuous approximation of func-
tions of one variable, IEEE Transactions on Computers C-23, pp. 445-448.

Trotts, I. J., Hamann, B., Joy, K. I. and Wiley, D. F. (1998), Efficient and robust simpli-
fication of tetrahedral meshes, in: Ebert, D. S.; Hagen, H. and Rushmeier, H. E., eds.,
Visualization 98, IEEE Computer Society Press, Los Alamitos, CA, pp. 287-295.

Xia, J. C. and Varshney, A. (1996), Dynamic view-dependent simplification for polygonal
meshes, in: Yagel, R. and Nielson, G. M., eds., Visualization 96, IEEE Computer
Society Press, Los Alamitos, CA, pp. 327-334.

Zienkiewicz, O. C. (1977), The Finite-Element Method in Engineering Science, McGraw-
Hill, London, United Kingdom.

29

APPENDIX

A.1. Romberg integration in the univariate case

For the integration of a function f over the unit interval [0, 1] one computes a sequence of
trapezoidal sums,

2P_1
1 1
A - L1 (fo+fzp+2; f) p=0..m, 2

where f; = f (Zi), and uses this sequence to compute extrapolated, usually better, integral

approximations. The sequence of A, values converges linearly to the exact value of the

integral of f defined over the unit interval. (One can expand the sum A, in terms of the

1

step size hy, = 35, and the resulting expansion is of order two.) Having computed the values

Apo = Ao, A1 := A1, Ay := Ay, ..., and A4, o := A,, we compute the extrapolated
approximations
Aiv1jo1—27%A; 54

Ala] = 1_2—2] 9 j: 1,,”7 7/:0, ...7n—j. (24)

Initially, we compute the triangular Romberg scheme for n = 1, and we increase n
one-by-one until the condition |Ag, — A1,-1| < € is satisfied. Fig. A.1 illustrates the
triangular Romberg scheme resulting from equation (24).

Ao’o — A(),l — AO’Q — ... AO,n—2 — AO,n—l — A(),n
Aig & A B Aips & Apa 7

AZ,O /—> A2,n—2

AnO -~

Fig. A.1. Triangular Romberg scheme.

A.2. Romberg integration in the bivariate case

Regarding the computation of the scalar products (F, f;) and error estimates in the bi-
variate case, one can choose from a large pool of numerical integration schemes. A rather
simple yet robust and efficient adaptive triangular cubature scheme is described in [Barn-
hill & Little '84], and one could use it as an alternative to the bivariate Romberg scheme
that we describe in the following. We choose to use Romberg integration, since it gen-
eralizes nicely to arbitrary dimensions. Regardless of the chosen numerical method, all
cubature methods assume that one knows an analytical definition of the function to be
integrated—this can be a C~1-, C%-, C-, ..., or C*®-continuous definition—and that one
can effectively evaluate the function. We briefly describe our Romberg scheme and the
construction of a sequence of integral estimates based on linear, triangular elements. We
limit our description to the standard triangle.

30

An initial estimate of the value of the integral [f(z,y) dzdy of some function f defined
over the standard triangle is the value

AO = (f(O, 0) + f(17 O) + f(07 1))7 (25)

(NN
Wl =

which is the area of the standard triangle—having vertices v, = (0,0)%, v{, = (1,0)7,
and v, = (0,1)"multiplied by the average of the three function values at the three
vertices. One obtains a better estimate by splitting the standard triangle uniformly into
four sub-triangles, estimating integral values for the individual sub-triangles, and adding
the resulting values. The six vertices defining the vertices of the four sub-triangles are

vio = (0,07, viy = (3,07, viy = (LO)T, vi;, = (0.1)", vi, = (3, 1)", and
vio = (0,1)T, and the four vertex triples defining the sub-triangles are (v{ o, vi o, V§1),
(V10:V3.0oVi1)s (VE.1, V11, V02), and (Vig, Vi, v(). Multiplying the areas of the sub-
triangles with the average of the three function values at their respective vertices and
adding the individual results yields the approximation

1

A1:22

1
3 (fo,o + fo,0+ fo2 +3f10+3fo,1 + 3f1,1)7 (26)

DN | —

where f; ; is the function value at vilyj. The general level-p approrimation is given by

2P _1
(fo,o+ faro+ for +3 Z fio

=1

i£2P NjA2P
Aitj=2P

2P-1 2P_2 2P_1—j
EDSVERYS SN IRE) SO A R
j=1 j=1 i=1
where f; ; = f(zip, 2’—1,)

Fig. A.2 shows the vertices and their respective weights needed for the computation of
A,. Formula (27) is a generalization of the trapezoidal sums used in the univariate case.
The A, values are then used to compute integral approximations A; ; using the triangular
Romberg scheme.

31

y A
ol (P=2)
3 3 xl_ii
24 2 3
3 6 3\
3 6 6 3
0
1 3 3 3 1
I = X
0 1

Fig. A.2. Vertices and weights used for approximation of fyl:o fwl:_g f(z,y) dxdy.

A.3. Romberg integration in the trivariate case

We use Romberg integration for the computation of scalar products (F, f;) and error values.
We describe a Romberg integration scheme for the standard tetrahedron. Subdivision of
the standard tetrahedron into sub-polyhedra is more complicated than subdividing the
standard triangle. An initial estimate of the integral [f(z,y,z) dzdydz of some function
f defined over the standard tetrahedron is

11
which is the volume of the standard tetrahedron—having vertices Vg’o’o = (0,0,0)T,

vio0 = (1,0,0)7, vi, o = (0,1,0)7, and v{,, = (0,0,1)7 —multiplied by the aver-
age of the four function values at the four vertices. One obtains a better estimate of the
integral by decomposing the standard tetrahedron into four tetrahedra and one octahedron
(which is split into four sub-tetrahedra), estimating integral values for the four tetrahedra
and the octahedron, and adding the individual results. Our level-1 decomposition of the
standard tetrahedron is shown in Fig. A.3.

32

1

Fig. A.3. Splitting standard tetrahedron into four tetrahedra and one octahedron.

The ten vertices defining the level-1 decomposition are vil’j,k = (%, %, %)T, k=0,..,2,
Jg=0,.,2—k t=0,...,2—Fk — j. The vertex quadruples defining the four tetrahe-
dra are (v{,0,0, V10,00 V1,00 V0,0,1)s (V1,0,05 V2,0,00 V1,1,0: V1,0,1)s (V0,100 V11,00 V2,00 V0,1,1);
and (Vé,o,pV1,0,1aV0,1,1aV0,0,2)- The vertex tuple (V%,o,mV%,Lo,V0,1,0aV0,0,1aV1,0,1aVé,1,1)
defines the “inner” octahedron. We split the “inner” octahedron into four sub-tetrahedra
of equal volume by adding an edge connecting vé,o,l and V%,I,O' Multiplying the volumes
of the tetrahedra and sub-tetrahedra with the average of the four function values at their
respective vertices and adding the individual results yields the approximation

j
fijk + fix1,50 + fij+i6 + fijks1

1-k 1—

— k—
k=0 j=0 i=0

+4f0,01+4f1,10+2f1,00+2f0,1,0+2f1,01 + 2fo,1,1> , o (29)

where f; ;1 is the function value at vil, ik The general level-p approximation is given by

33

2P—1 2P—1—k 2P—1—k—j

1 11
b =56 (I;) ; ; figw + fisrgn + figare + fijhsr
2P—2 2P_2-k 2P-2—k—j
YD > Afigker A itk + 2 i1k (30)
k=0 ;=0 i=0

+2fij+1k + 2fiv1g k41 + 2fij41,k41
2P _3 2P_3_k 2P—3—k—j

+y> o vk forrgen + figien + fz'+1,j+1,k+1>a

where fi i = f (37, 35 25)-

Fig. A.4 shows a part of our level-p decomposition of the standard tetrahedron into sub-
polyhedra—which is just one of many possible decompositions. There are three types of
sub-polyhedra: a scaled version of the standard tetrahedron, an octahedron, and a “hole-
filling” tetrahedron. The “hole-filling” tetrahedron implies the third term of the sum

appearing in equation (30). Once again, these initial integral estimates are extrapolated
using the triangular Romberg scheme.

2)

Fig. A.4. Types of polyhedra used for decomposition of standard tetrahedron.

Remark A.1. One could write equation (30) in the form of equation (27) used in the bi-
variate case. This would require counting the number of tetrahedra and octahedra sharing
a particular vertex v ik in the level-p decomposition of the standard tetrahedron.

34

Bernd Hamann is an Associate Professor of Computer Science and Co-Director of the
Center for Image Processing and Integrated Computing (CIPIC) at the University of Cal-
ifornia, Davis, and an Adjunct Professor of Computer Science at Mississippi State Univer-
sity. He is a Participating Guest researcher at the Lawrence Livermore National Labora-
tory. From 1991 to 1995 Hamann was a faculty member in the Department of Computer
Science at Mississippi State University and a research faculty member at the NSF Engi-
neering Research Center for Computational Field Simulation. His primary interests are
visualization, computer-aided geometric design (CAGD), and computer graphics with a
focus on multiresolution methods. He is the author or co-author of over 50 reviewed pub-
lications and has presented his research at leading conferences in the U.S. and in Europe.
Hamann received a B.S. in computer science, a B.S. in mathematics, and an M.S. in com-
puter science from the Technical University of Braunschweig, Germany. He received his
Ph.D. in computer science from Arizona State University in 1991. Hamann was awarded a
1992 Research Initiation Award by Mississippi State University, a 1992 Research Initiation
Award by the National Science Foundation, and a 1996 CAREER Award by the National
Science Foundation. In 1995, he received a Hearin-Hess Distinguished Professorship in
Engineering by the College of Engineering, Mississippi State University. Hamann is a
member of the Association for Computing Machinery (ACM), the Institute of Electrical
and Electronics Engineers (IEEE), and the Society for Industrial and Applied Mathematics
(SIAM).

Benjamin W. Jordan is a technical director at Pixar Animation Studios in Richmond,
California. Prior to joining Pixar in 1997, he worked as a computer graphics researcher
at the Center for Image Processing and Integrated Computing (CIPIC) at the University
of California, Davis. His primary interests are technical direction for computer gener-
ated images in film, computer-aided geometric design (CAGD), rendering, and computer
graphics. Ben’s list of credits includes: Pixar’s Academy Award-winning short film “Geri’s
Game,” Disney’s Animal Kingdom attraction “It’s Tough to be a Bug,” and the feature
films “A Bug’s Life” and “Toy Story 2.” Ben received a B.S. in computer science and
engineering from the University of California, Davis, in 1997. Ben is a member of the
Association for Computing Machinery (ACM) and the ACM Special Interest Group on
Computer Graphics (SIGGRAPH).

David F. Wiley is a Ph.D. student in Computer Science at the University of California,
Davis, where he has participated for the past two years in research projects performed
at the Center for Image Processing and Integrated Computing (CIPIC). David’s primary
interests are scientific visualization and computer graphics. David has been working as
a program developer for PC software at WinWay Corporation, Sacramento, California,
for the past two years. He received a B.S. in computer science from the University of
California, Davis, in 1998.

35

