Segmentation of Three-dimensional Retinal Image Data
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Abstract —We have combined methods from volume visualization and data analysis to support better diagnosis and treatment of
human retinal diseases. Many diseases can be identi ed by ab normalities in the thicknesses of various retinal layers captured
using optical coherence tomography (OCT). We used a support vector machine (SVM) to perform semi-automatic segmentation of
retinal layers for subsequent analysis including a comparison of layer thicknesses to known healthy parameters. We have extended
and generalized an older SVM approach to support better performance in a clinical setting through performance enhancements and
graceful handling of inherent noise in OCT data by considering statistical characteristics at multiple levels of resolution. The addition of
the multi-resolution hierarchy extends the SVM to have “global awareness.” A feature, such as a retinal layer, can therefore be modeled
within the SVM as a combination of statistical characteristics across all levels; thus capturing high- and low-frequency information.
We have compared our semi-automatically generated segmentations to manually segmented layers for veri cation purpos es. Our

main goals were to provide a tool that could (i) be used in a clinical

setting; (ii) operate on noisy OCT data; and (iii) isolate individual

or multiple retinal layers in both healthy and disease cases that contain structural deformities.

Index Terms —support vector machine, segmentation, image analysis, retinal, optical coherence tomography, volume visualization,

image processing.
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Advancements in medical imaging are facilitating the esttom of
accurate information from volumetric data making thresehsional
(3D) imaging an increasingly useful tool for clinical diaggis and
medical research. This development makes possible nasiiy ex-
amination and analysis of diseases by providing cliniciaaght into
the morphology of disease within the body and how it changes o
time and through treatment. Common non-invasive imagingatio
ties are magnetic resonance imaging (MRI) and computeddcepby
(CT). Our efforts focus on the analysis and visualizatiowvafimet-
ric OCT retinal data. OCT, described in [8], is an acquisitgystem
based on back-scattering of coherent light producing & sthimages
similar to MRI and CT. A light beam is directed into a patisn¢ye
where re ected light is merged with a reference beam efigitn in-
terference pattern that is used to gauge re ectance atusdepths

INTRODUCTION

which has caused problems for existing automatic retiryadrlaxtrac-
tion methods [19]. To address this problem we have develayssni-
automatic segmentation system in which the morphology thak
structures can be discovered and re ned by a clinician. Timéc@n

interactively speci es the location of a retinal layer onewfselect
slices of the volume. This selection is then extrapolateduhout
the entire volume using a SVM classi er in order to create gnsen-
tation. Once segmented, we provide visualizations and mneaents
of the resulting segmentation to aid in disease diagnosie main
visualization interface is an interactive 3D volume reimfgrof the
segmented portions of the volume. We also provide more famil-

sualizations such as a thickness map[1], currently a condiammnosis
tool, and a 2D summed-intensity projection of the data rdsieign a
fundus image (feature included for completeness, but we sttoim-

along the beam path. Quickly sweeping the beam across tinalretages of it in this paper). Additionally, the user can compuiime

surface, in a structured pattern, produces the image stack.
The ophthalmology eld historically identi ed diseases byamin-

and thickness from layer segmentations, which have prosefuliin
retinal disease diagnosis.

ing fundus imagegcaptured using an ophthalmoscope showing the Speckle nois& a normally distributed noise component introduced

retina, macula, and optic disc) and more recently by 2D tiesk
maps of retinal layers. OCT has drastically improved the tyfinfor-
mation available to vision scientists allowing for a mortuitive view
as well as analysis of retinal layer information. Recerslp, OCT
imaging has gained popularity by giving practitioners mioferma-
tion for their evaluations due to advancements in OCT teldyyo As
a result, we have built software that turns what is an otrezwguali-
tative evaluation into a quantitative form.

An automatic approach that segments, classi es, and aesyeti-

by the data acquisition process. Our SVM approach, basethen t

original work [24], considers a voxel's mean value and vac@across
multiple resolutions in order to gracefully handle thisseand to give
the SVM a global perspective over feature shapes. Additigrthis
SVM is more tolerant of misclassi cation by the user, vanat be-
tween patients and diseases, and adapts well to the daddioagon-
stituting retinal layer morphology.

Our main goals were to provide a tool that could (i) be used in a

clinical setting; (ii) operate on noisy OCT data; and (iiplate indi-

nal |ayers from 3D OCT would be ideal. However, the morphplogvidual or multlple retinal Iayers. Our main contributiors dchieve

of retinal layers depends on the patient and the diseaseeistiqn,
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these goals are (i) integration of a hierarchical data ssprtion into
SVM computations to counter noise and to better nd retirsalelrs
and (ii) several speedups for improving SVM performancevetg

its practical use within a clinical setting.

1.1 Related Work

We evaluated a number of methods in order to nd one that met ou
needs for OCT retinal data. One commonly used volumetria dat

segmentation method is a visualization technique that asese-
dimensional transfer function to map scalar intensity téoicand
opacity [12]. This approach effectively segments regioased on
scalar intensity so that areas of interest are shown opagtrle other
regions are rendered transparently. Problems arise wiffenedit bi-
ological features share similar scalar values, manifgsii® opaque
regions that should not be, and is exacerbated when noisessm.
Some improved methods address these problems [9, 10, 1Ha&}
ever, the user interface for these types of methods is tijpice cum-



bersome for clinicians to use in everyday practice since tieed inti-
mate knowledge of the intensity-to-color mapping in oragprioperly
understand the user interface. Our work is based on the vesdrithed
in [22], which describes how arti cial intelligence algtitims can be
used to construct N-dimensional transfer functions thincargintuitive
user interface.

Machine learning algorithms such as arti cial neural netkghave
been used in medical imaging research somewhat succgg&ut].
However, SVMs [3, 15, 4] have yielded more reliable resutis f
feature detection [2, 21, 16]. The method discussed in [28h-c
pares the use of neural networks and SVMs when constructing
N-dimensional transfer function (mapping). In our case, ahgity
of SVMs to handle error, both in the form of speckle noise aseru
misclassi cation, makes them attractive.

Typical characteristics used to train machine learningritigms
are scalar value, gradient magnitude, spatial locatidantation, and
neighborhood information. However, these charactesstam cause a
SVM to be sensitive to noise or objects that are structudafprmed,
resulting in poor segmentations. We have found that casefigiction
of the characteristics de ning the SVM input vector is tygly bet-
ter than adding as many as possible. Too many characterditice
the input vector by slowing down SVM computations and thit €-
ten leads to unwanted segmentation results. AdditiongN§Ms are
typically fed local data characteristics establishing petelence on
the base resolution that ignores global feature trendsateagppar-
ent when looking at the data macroscopically. The methodribesd
in [17] uses wavelets combined with a SVM classi er to idéntiex-
ture properties of image data. This concept is useful sineertethod
identi es patterns with distinct texture characteristit@more global
scale. The method described in [20] employs a multi-resmiusVM
kernel to account for macroscopic features and differs fiteemethod
discussed in this paper in that we instead compute a musitigon
representation of the data.

b-scan (XY axes)

a

Un-aligned (ZY axes) &

Aligned (ZY axes)

Fig. 1. Top image shows one OCT b-scan. Middle image shows 80 un-
aligned b-scans along the stack axis. Bottom image shows the scans
after alignment.

free volumes since the patient must not move their eye foutatam
seconds, which is not always possible due to natural intatyreye
movements. In addition, we needed to build a system thaticeed-
ment and analyze diseased retina. In diseased cases, itz laters
are not well-de ned and can i) be missing entirely, ii) vamthickness
across the retina, iii) be very thin, iv) be very thick, v) beywbumpy,
and vi) be erratic in morphology; all of which are handledefively

Good examples of the current state of the art of 3D OCT visudty @ SVM due to its exibility.

ization and analysis are described in [25, 13]. To our kndgée no
existing system for 3D OCT retinal visualization and an@lyis as
complete and accurate as that presented in this paper.

1.2 OCT Retinal Data

Volumetric OCT data are captured by directing a light beara pa-
tient's retina in a gridded fashion. Back-scattered irerfice patterns
are captured through a complex feedback system, descriljgd]i to
produceb-scans similar to slices obtained via MRI, CT, or ultrasaun
However, neighboring slices are not registered to one anath they
are in MR imaging, due to naturally occurring unconscious eypve-

2 SVM SEGMENTATION METHOD

The two main choices when implementing a SVM are the kerngél an
input vector used to classify the feature space. We use alrbalsis
function kernel since we assume it can represent our feapaee
well and also that speckle noise is normally distributedssthe data.
Additionally, it allows non-linear separation of the space

02.1 Feature Space

The data characteristics we include in our input vector asadas in-
tensity, gradient, spatial location, mean of the neighkems variance.

ments. During the scanning process, the clinician moniaesltime The most obvious inclusion for a voxet fi; j;kg is scalar intensity
display of theb-scans in order to eliminate low-frequency movementdj and allows for ef cient segmentation of regions having titely

High-frequency vibrations are almost always present. dalpi, the

low standard deviation (noiseless data) and in our case, taigh

clinician collects 80 to 20-scans having dimensions ranging fromWwe have substantial noise, this characteristic still psayseful. The
500 250 to 1000 500 pixels in size (corresponding to a region ofpatial locatiorp; = fx;;y;;zg of a voxel (considered with the other

about 8qnm 8mm 300mmin size).

characteristics) allows the differentiation betweendess having sim-

Figure 1 shows a Sing'b-scan and also a cross section of severgp.r data-distribution characteristics but residing iffetient locations.

b-scans showing the (mis-)alignment along the stack axisa pne-

The method described in [22] suggests that six neighbongitie

processing step, slices are registered using standastregigin tech- Valuesf; 1;j 11 1 should be considered ato counter noise. They
niques. Our clinicians use ImageJ [18], which computesirigidy ~Suggest that if a voxel value has been perturbed by noiseeisioa of
transformation (translation and rotation) to minimize ttilerence its neighbors will help determine the “actual value.” Weriduin our
between neighboring-scans. Figure 2 shows volume data sets ¢fase, that this can lead to disconnected components duede ta-

three different retinal diseases compared to a healthy humiina.
Often, the disease type is obvious from a singlecan. However, a
time-series volumetric data set can show disease prodrassstnot
apparent from a single scan. In addition, a clinician camaextvol-
ume information of uid, in the case of retinal detachmenti@ col-
lects beneath the photoreceptor layer), in order to gauggrigeof a
disease before surgery and improvement after surgery.

For a normal healthy retina, the retinal surface and layersvell-
de ned but obfuscated by noise inherent in OCT data. Thix&ce
erbated by the fact that patient's move their eye while baicanned

resulting in “spikes” inb-scans (as indicated in the left-side of the fi;

top image of Figure 1). The clinician cannot always captueenish-

gions having the appropriate neighbors, but not necegshslcorrect
local data distribution. Our method instead uses as a paeartie
mean of the six neighbors, leading to improved results. \We &i-
clude the variance (instead of the standard deviation)dloidte a data
distribution characteristic and additionally include djemt magnitude
to identify tissue boundaries.

In summary, for a voxel at world-space locatiop; with scalar
value f; having neighbor& = fi  1;j 1,k 1gthe data character-
istics we use for our input vector are:

1)
)
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Age-related macular degeneration

Retinal detacihm Glaucoma

Fig. 2. Comparison of different retinal diseases. The front portion of each volume has been clipped in order to reveal internal structures. Drusen,
extracellular deposits on the photoreceptor layer, are indicative of age-related macular degeneration. The retinal detachment data were captured
after surgery. All images are of the foveal region (the dip in the middle) except for the glaucoma case, which is of the optic nerve head.
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Thus, we include for each voxethe scalar valud;, locationp;, mean
2 aroundi, and the gra-

value fT of the neighbors around variancesi
dientNﬂ ati using a local difference operator.

2.2 Multi-resolution Hierarchical SVM

Even in the presence of noise, a person can seemingly autaihat
classify features by the distribution of data intensitiesboth local
neighborhoods and globally. When confronted with subtknges in
these distributions, a person is able to perceive mateisabie) bound-
aries that are not necessarily well-de ned by scalar vatwe are in-
stead identi ed by the transition of one noisy distributimanother.

I3

Fig. 3. We construct a mipmap-like hierarchy in order to compute vary-
ing levels of data distributions to sample as input to our SVM algo-
rithm. Top-left image shows a slice through a level having a resolution of
475 150 48 Remaining images show levels having a resolution half
the one before it. (The change in the “bump” is due to the in ue nce of
neighboring slices in front and behind the shown slice.)

2.3 Feature Speci cation
A user provides SVM training data through an intuitive ifdee in

To expand the operation of our SVM beyond the local scope tf deorder to create the “segmentation function.” Our systewadla user

characteristics, we construct a hierarchy of represemtznf the vol-
ume and sample the mean value, gradient magnitude, ancheeré
each level of this hierarchy in order to capture the distidruacross
all levels and accumulate a weighted average of these samipde to
inserting them into the SVM.

Our algorithm constructs a mipmap-like hierarchy having fil
resolution data as levéd and successive levelsi > 0, having half
the resolution (in each dimension) of the previous léyvel, see Fig-
ure 3. The user speci es “feature” and “background” voxaidgpand
then speci ed voxels are mapped to coarser leligls> 0 in order to
determine the intensity value, mean value, gradient, andnee at
that level. Since each lower-resolution level voxel cowetarger re-
gion, we weigh each successive level's result to reasorgibiynish
its in uence on the nal value. Since each successive lemadur hi-
erarchy is an eighth the size as the previous level, eachllegeeives

a weightw; = 1=8'. We allow the user to manipulate this value tP

increase or further diminish the in uence of lower resabutilevels.
Additionally, we normalize the weights so th&f;qw = 1 to main-
tain the integrity of the values. Figure 4 shows the effeditierent
hierarchy-level weights on SVM segmentations. To includerhulti-
resolution hierarchy into our SVM computations, we applieghted
averaging each to scalar intensity, gradient, mean of tighers, and
variance characteristics. Thus, when obtaining charatites for each
voxel (either to train or classify), we access the hierarahall levels
to produce a weighted average for each of those charaasridive
did not include spatial location in this process since thigracteristic
was not affected by multiple levels of detail. Additionallye found

to quickly classify features by using a small number of spation

(training) points. We perform this speci cation on axisgaled 2D
slices of the volume similar to [22]. The user can slice a @ldmough
the volume to see a 2D intersection image and can “paint” aiytlane
to mark points as “feature” or “background” as indicated ly green
and red marks, respectively, in Figure 4. This approach edadrned
quickly and has proven to be user-friendly within a cliniselting.
The user is required only to draw through regions of inteagst to
indicate regions not of interest. Unfortunately, as théning data
set grows through painting, so does the complexity of the SVMs
additional complexity leads to drastically longer segragoh times.

2.4 Speed Improvements

SVMs have a large computational cost that hinders theiriegjbn

to an entire volume with real-time response behavior. Weehav

lemented several techniques that reduce computatiosafaoboth
SVM training and classi cation while having minimal effeon the
resulting segmentation quality. These methods are intetmenini-

mize clinician time needed to iterate between specifyiniing data
and viewing results. The methods include (i) training-datduction;
(i) evaluation on a single slice; (iii) checkerboard SVMrgaing; (iv)

SVM multi-threading; and (v) clipping planes; each is dissed in
detail in the following sections.

Training-data reduction We found that users typically speci ed
many training data points resulting in duplication of theadahar-
acteristics fed into the SVM since our painting interfacgslaown
a “block” of speci cation points whenever the user marks gioa.

that the maximum number of levels was less than ten in mosiscag hus, using every voxel marked by this block introduces soee

since one of the primary axes would vanish by this point.

dundancies resulting in substantial SVM computation g@saivhile
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Fig. 4. Inuence of multi-resolution hierarchy on SVM segme ntation.
Top-image uses standard local data characteristics while subsequent
segmentations accumulate data characteristics across the hierarchy us-
ing the weight shown. Each segmentation used the same training data
points as indicated by the green (feature) and red (background) marks.
As indicated in the bottom image, the presence of an overlying grid be-
comes noticeable when lower-resolution levels are weighted more. In
this case, the entire segmentation region should be connected, but in
general, this is not the case, for example, when segmenting uid pock-
ets caused by retinal detachment.

not necessarily producing better results. A represemtatibseR =

less computation time. To obtain the subBet T, we implemented
a discrete form ofbest-candidate samplingshere a random point
ro = trangqTj) i rst added toR. Then, we repeatedly add ® the
point fromT that is farthest (in Cartesian distance) from all points cu
rently in R. This process continues until (i) the number of poiRs
reaches a user speci ed maximum threshold or (ii) the neittgo be
added is closer to another point fthan a user-speci ed minimum
distance. Both of these thresholds mitigate the growthabfiing data
by reducing the set of points used in a fashion that covetsaatiing
regions well. We found in practice that having no maximuneshold
while setting a minimum distance of two voxels between trgjrdata

points inR has little to no effect on the resulting segmentation whil

speeding up the SVM computation by nearly 60%.

Evaluation on a single slice Our software allows a user to test

the SVM segmentation on individual 2D slices to evaluatediselting
segmentation for that slice. If needed, the user can moképainted
regions or browse additional slices and subsequently apph5VM
or further mark those slices. The application of the SVM tongle
slice requires only a few seconds (even for larger volume&90tx
500 200 voxels). Once satis ed with the segmentation on indieid
slices, the user can apply the SVM to the whole volume.

Inner limiting membrane  Fovea

Photoreceptor layer

Fig. 5. Regions isolated by clinicians are the photoreceptor layer (PRL)
and the full retinal thickness indicated by the boundary at the bottom of
the PRL and ending at the top of the inner limiting membrane.

Checkerboard SVM classi cation After the SVM has been
trained, we apply the assumption that retinal features arehrtarger
than an individual voxel by using a checkerboard scheme that
classi es every other voxel by the SVM as either a feature ackb
ground. Each unclassi ed voxel is then determined by ndihg ma-
jority classi cation of its six neighbors. If the classi ¢@n is tied,
we then apply the SVM to that voxel to decide. We found the kbec
board scheme consistently reduces SVM classi cation tignehghly
45% and consequently leads to smoother object boundaréeteas
“orphaned” voxels (sparse individual misclassi ed vojels

SVM multi-threading Once trained, an SVM inherently classi-
es each voxel independently of others. We take advantaghisby
incorporating multi-threaded SVM classi cation in order take ad-
vantage of popular multi-processor computers (the princargputer
used to run our software has four processor cores). We havelfo
this to do the expected by speeding up the SVM classi cati@p s
according to the number of physical processors.

Clipping planes Clipping planes can be speci ed to restrict the
SVM application to a sub-volume of the data. Our softwarevedl a
user to specify axis-aligned clipping planes in order toctfgea sub-
region (bounded by the clipping planes). This approachaesithe (i)
number of voxels to be processed, (ii) speci cation time bg tser,
and (iii) training data size while subsequently reducirggecbmplexity
of the SVM resulting in both faster training and classi ati For reti-
nal data, clipping planes are useful for isolating broadorgaround
relatively at retinal layers of interest. Thus, while a gite concept,
this method is quite useful for our application.

3 LAYER THICKNESS ANALYSIS

Once a retinal layer has been isolated, measurements argutzom
in order to track patient progress over time or to diagnoseaties
Such as glaucoma, which can be identi ed by retinal-laydurtes
outside normal parameters. Additionally, the uid volumenieath the
photoreceptor layer caused by a retinal detachment can beureal
before and after surgery to insure that the surgery was ass@nd
additionally to monitor disease advancement.

Typically, a clinician isolates thfull retinal thicknessas the region
between the bottom of the photoreceptor layer and the tdpcipf
the retina in order to examine thickness maps, see Figuribkiess
?naps provide insight into gradually changing thickness @thér ab-
normalities. The clinician also isolates the photoreceftger itself
in order to reveal thickness abnormalities. More detailghickness
map analysis of retinal layers can be found in [14, 6, 1].

4 RESULTS

Our software is currently being used by vision scientistthatUni-
versity of California, Davis Medical Center. We present kvby two
clinicians to examine our software's practicality in a @i setting
as well as the quality of segmentation results. We have egmur



SVM

Manual

Fig. 6. Extracting the “healthy” thickness map from full retinal thickness
segmentations. Left-column indicates manual segmentation while right-
column is the SVM. Top-images show the segmentation speci c ation on
a slice. Middle-images show the segmentation applied to the whole vol-
ume. Bottom-images show the extracted thickness maps. For thickness,
one voxel unit is approximately equal to lum

methods to data from patients having age-related macugendsa-
tion and retinal detachment and compare these to a heatihg,reee

Figure 2. We examined how well our method segments healtivy r

nal layers, diseased retinal layers, and pockets of uid éapnparing
our semi-automatically generated segmentations to mayamnrated
segmentations.

# Training | SVM Training | SVM Class.

Improvement Points Time (sec) Time (min)
(laptop) 2GHz Intel Core 2 Duo + 2GB main memory
None 2902 8.92 29.74
CH only 2902 8.73 14.74
CH+MR 2902 8.75 15.94
CH+RED 736 1.02 6.36
CH+MR+RED 732 1.00 6.59

(lab machine) Dual 3GHz Intel Xeon + 3GB main memory
None 2902 5.25 7.54
CH only 2902 5.05 3.76
CH+MR 2902 5.13 4.00
CH+RED 736 0.53 1.60
CH+MR+RED 732 0.52 1.64

Table 1. Improvement in uence on full retinal thickness segmentation
performance as applied to the healthy data. Improvements tested were
checkerboard (CH), multi-resolution hierarchy (MR), and best candidate
reduction (RED). (Multi-threading was used in all tests.) All tests began
with the same training data. Tests were performed on a laptop having
a 2GHz Intel Core 2 Duo processor (two cores total) and 2GB of main
memory and also on a desktop computer used by the clinicians having
dual 3GHz Intel Xeon processors (four cores total) with 3GB of main
memory. The multi-resolution hierarchy used the weights w; = 1=8'. The
best candidate training data reduction included a minimum distance of
two voxels between training data.

software. The majority of time is spent exporting 2D slicesif the

acquisition software and subsequently registering theoméosanother.
It takes approximately 15 minutes for a clinician to procak®f the

collected patient data in this fashion.

Protocol We asked the two participating clinicians (identi ed as
C1 and C2) to isolate the photoreceptor layer (PRL) and thedti
nal thickness (encompassing the space from the retinarfp to
and including the PRL) using the painting interface on aleéhdata
sets. At rst, we allowed them to spend as much time as theygho
necessary to obtain adequate results and found that thay @meind
20 to 30 minutes per feature segmentation. Then, we asked tihe
repeat each feature segmentation in under ten minutesr fdseilts
are explained in detail over the following sections.

e

4.1 SVM Performance
We measured the running time for the checkerboard, mudtiution

We included a manual segmentation tool within our software ahierarchy, and best-candidate training-data reductigoravements.

lowing a clinician to isolate retinal layers by de ning topad bottom-
bounding polylines on key frames throughout the volume. pexi-
ed polylines are linearly interpolated between key franmesrder to
segment every slice. We use this segmentation as a “goldastdih
to gauge the quality of our SVM-based segmentations. Wedashe
clinician to de ne three gold standards for our test data fouhd
that this process required 30 minutes on the healthy dataiaubal 50

We performed the tests on the healthy data using the “urdatime”
SVM training data from clinician C1. We used two computers-ha
ing different amounts of main memory and processor capsilisee
Table 1. Overall, we found that the checkerboard speedgptbliim-
proved segmentation quality while signi cantly speedingthe entire
process. Thus, we left this option on for these tests.

Overall, we determined that the multi-resolution hiergrtiad a

minutes on the diseased data to specify. Figure 6 shows aaifyznu negligible effect on SVM training while having a SVM classation

and SVM-generated segmentation as well as the process ifrsfité¢
segmentation to (ii) volume segmentation to (iii) full regl thickness
map of the healthy data.

Data acquisition

penalty of only 3% to 8% in all cases. We had expected the multi
resolution hierarchy to impact the SVM classi cation rungitime
signi cantly more, but it seems that the SVM computationse far
more complex than the additional data accesses needed hennept

In practice, the clinician spends approximatelythe hierarchy. The checkerboard improved performance byt&50%

30 to 45 minutes with a patient in order to capture the 3D OCG@&.dain all cases, which is expected since it applies the SVM tlass

The patient must Il out medical forms, is educated aboutipoment
being used, their pupils may be dilated, and is then positionto
a chin rest for the scanning. The clinician then goes thraugls-
tematic process of instructing where to xate enabling thptare of
several scans of various regions on their retina. The @inievalu-
ates realtime 2D scan images in order to guarantee datayqu@fice
scanning is nished, the clinician proceeds with data pssogg and
visualization.

There is a series of steps involved in order to prepare tteefdabur

tion to about half of the data. The best-candidate trainiata de-
duction (having a minimum distance of two voxels betweeming
points) improved SVM training performance by about 90% amd f
ther reduced SVM classi cation running time by about 60% beviniot
signi cantly effecting the resulting segmentations. Qtyaineasure-
ments are detailed in the next section.

Table 2 shows the running time results for all SVM segmeoiesti
(as performed on the lab computer). The full thickness segatiens
required on average less than two minutes. The SVM classboa



time did not seem to directly correlate with the trainingedsize. Ad-
ditionally, we found that clinicians tended to paint aggresly up
front when under a time constraint in order to avoid moreatiens
later and, when under no time limit, the clinicians tendedh#int
sparsely and iterate more often. This led to the ten-mimati@ihg
data being comparable or even larger than the unlimited-training
data.

Time # Training | # Reduced| Total SVM
Constraint Points Points Time (min)
Healthy - Full Thickness
No Limit- C1 3348 838 1.90
No Limit- C2 5725 1264 1.53
10 mins - C1 4469 1046 1.49
10 mins - C2 16113 3631 3.48
Healthy - PRL
No Limit- C1 8636 2049 2.81
No Limit- C2 20569 4752 6.22
10 mins - C1 13232 3029 3.18
10 mins - C2 19135 4212 4.42
Macular Degeneration - Full Thickness
No Limit- C1 2831 676 0.78
No Limit- C2 3772 952 0.62
10 mins - C1 2236 556 0.36
10 mins - C2 3936 939 0.55
Macular Degeneration - PRL
No Limit- C1 7429 1753 143
No Limit- C2 6913 1635 1.30
10 mins - C1 7925 2013 1.53
10 mins - C2 14277 3213 1.40
Retinal Detachment - Full Thickness
No Limit- C1 4832 1138 1.80
No Limit- C2 4381 1027 1.66
10 mins - C1 4325 997 1.26
10 mins - C2 4574 1008 1.46
Retinal Detachment - Fluid
No Limit- C1 5058 1267 1.22
No Limit - C2 4623 1147 0.93
10 mins - C1 9598 2171 2.34
10 mins - C2 2985 742 0.89

Table 2. Measured running times for full retinal thickness segmentations
using multi-threading, clipping planes, checkerboard, multi-resolution hi-
erarchy, and best-candidate training-data reduction. C1 and C2 indicate
each clinician. Tests were performed on our “lab computer,” a dual pro-
cessor 3GHz Intel Xeon with 3GB of main memory (four processor cores
total). Multi-resolution hierarchy weights were set to w; = 1=8' and the
best-candidate training-data reduction had a minimum distance of two
voxels between training points. Measured running time without our im-
provements ranged between from 30 min to 2 hours in some cases.

4.2 SVM Segmentation Quality

Time 68% are
Constraint lessthan | Mean | STD
Healthy - Full Thickness
No Limit - C1 3.233 3.875 | 10.288
No Limit - C2 7.074 6.115 | 5.329
10 mins-C1 4.318 4293 | 7.285
10 mins - C2 5.188 4563 | 4.496
Healthy - PRL
No Limit - C1 3.829 5.048 | 8.119
No Limit - C2 3.746 4,983 | 8.063
10 mins-C1 3.813 4.868 | 7.009
10 mins - C2 6.811 8.712 | 11.434
Macular Degeneration - Full Thickness
No Limit - C1 4.322 3.331] 2.617
No Limit - C2 3.13 2.604 | 2.076
10 mins-C1 3.063 2.748 | 4.227
10 mins - C2 2.443 2.036 | 1.684
Macular Degeneration - PRL
No Limit - C1 6.049 5.061 | 4.428
No Limit - C2 5.502 4,614 | 3.739
10 mins-C1 4.93 4,431 | 4575
10 mins - C2 5.695 4751 | 4.114
Retinal Detachment - Full Thickness
No Limit - C1 3.986 3.451 | 3.427
No Limit - C2 4512 3.693 | 3.018
10 mins-C1 5.111 4,263 | 4.038
10 mins - C2 5.594 4.842 | 5.051
Retinal Detachment - Fluid

No Limit - C1 7.34 4.895 | 6.438
No Limit - C2 7.21 4,865 | 6.16
10 mins-C1 7.78 4901 | 5.694
10 mins - C2 9.63 5.9 6.675

Table 3. Comparison of SVM segmentations to gold-standard manual
segmentations. C1 and C2 indicate each clinician. The values in the ta-
ble indicate the thickness difference in voxel units between the SVM and
manual segmentations. The 68% metric states that 68% of the thickness
differences are less than the value speci ed in the table. La yer thick-
nesses typically range from 30 to 100 voxel units depending upon the
disease.

cians had dif culty isolating the PRL in many patient case do the

PRL being thin € 30 voxels) and the local data characteristics used

in standard SVM computations were not able to capture thiam™th
morphology of the PRL. With the addition of the multi-residm hi-
erarchy, we are now able to isolate the PRL accurately. Ehdue
to the ability of the hierarchy to examine lower-resolutievels (low-
frequency information) in order to nd feature charactéds that de-
ne the thin PRL. Figure 7 compares the manual segmentatibn w
the multi-resolution SVM segmentation of the PRL for the ltiga

We derived a thickness map from each segmentation by considéata. The multi-resolution SVM segmentation captures ¢hedl re-

ing the distance (thickness) between the top and bottonacesfof
the segmentation. To estimate the quality of our SVM methueel,
compared thickness maps extracted from the gold-standardiafly
generated segmentation to that obtained by our cliniciah' seg-
mentation. We computed the difference, at each point, keriviiee

gion well while additionally revealing retinal blood vekse

Our SVM method performed well on both healthy and diseasa dat
The ability of the SVM to isolate arbitrary features, suchhespocket
of uid beneath the retina in the case of retinal detachménthers

thickness maps as our error metric. We computed the meartamd sthe application of our method. Figure 8 shows the resultsuofuid

dard deviation of these differences and additionally foandseful
metric to be the value that 68% of the differences fell beleeg
Table 3. Furthermore, we investigated the effect our cirbderd,
multi-resolution hierarchy, and best-candidate trairdata reduction
schemes had on segmentation quality, see Table 4. We fouratn
of these cases that the resulting SVM segmentation bettishedthe
gold standard.
Prior to our addition of the multi-resolution hierarchy, razlini-

segmentations for the retinal detachment data. We notleadall of
the SVM segmentations underestimated the volume sligfthyjs is
apparent in the histogram of thickness-map differencesstiswn in
Figure 8. Additionally, we were especially pleased with thsults
in disease cases having retinal layer deformation. Thispsiagarily
evident with the drusen on the PRL of the age-related macdggen-
eration data. We obtained reasonable reproducibility amtinicians
as well as tolerable error, see Figure 9.



68% are
Improvement | lessthan | Average | STD
None 5.598 5.335| 6.043
CH only 5.451 5.143 | 5.689
CH+MR 5.433 5.021| 5.339
CH+RED 4.386 3.898 | 3.793
CH+MR+RED 4.1 3.806 | 4.393

Table 4. Improvement in uence on full retinal thickness segmentation
quality as applied to the healthy data set. The values in the table indi-
cate the thickness difference in voxel units between the SVM segmen-
tation computed using the improvement and the manual segmentation.
Improvements tested were checkerboard (CH), multi-resolution hierar-
chy (MR), and best candidate reduction (RED). All tests began with the
same training data. The multi-resolution hierarchy used the weights
w = 1=8'. The best-candidate training data reduction included a min-
imum distance of two voxels between training points. Improvements
tended to increase segmentation quality.

A ) TR

| ‘1“‘

i

Thiclness (voxels) 50

Fig. 7. Comparison between manual and multi-resolution SVM segmen-
tation of the PRL of the healthy data. Left-image shows gold standard
manual segmentation. Right-image shows the multi-resolution SVM
segmentation. Note how the SVM segmentation reveals blood vessels
and better indicates the location of the fovea (red area in the middle).
The difference in how the manual and SVM segmentations handle blood
vessels manifested as voxel difference error in our thickness maps.

5 CONCLUSION AND FUTURE RESEARCH

We used a combination of volume visualization and data aistgch-
niques to better diagnose and subsequently treat retisehsies. We
have found that applying volume visualization technique3D retina
image data collected in a clinical setting has achievedesscby re-
vealing subtle features that standard diagnosis procsahiss as well
as providing accurate quantitative measurements of tetinactures.
This tool is currently being used in a clinical environmentias
continually providing insight into challenging retinabualization and
analysis problems. We found that handling noise is a ditdakk
when training and using any type of machine learning alborifor
segmentation. We plan to investigate image Itering tegheis to re-
duce speckle noise prior to SVM processing. We also plandater
training data that can be applied to multiple volumes elatiig the

| MNo Limit - C2 |-
10 min - C1 |-

~ ®m10 min - C2

Fig. 8. Isolation of uid beneath retina from retinal detach ment data.
Top-left image shows SVM segmentation from clinician C2 having a
ten minute time constraint. Top-right image shows associated thickness
map. Bottom-image shows the histogram of thickness map differences
between the manual and SVM segmentations for all uid SVM seg men-
tations. SVM segmentation consistently slightly underestimated the uid
volume as compared to the manually speci ed segmentation. W e no-
ticed that this was because the manually speci ed polylines were placed
on the layer boundary as opposed to just inside of it, which is how the
SVM identi es the region.

the hierarchical levels differently) due to the enormousetisavings
involved with using the SVM over other methods.

As a result of this work, vision scientists are using thistsafe
to provide quantitative information useful in treatmenrarpiing that
is not otherwise available. It is certain to contribute tee@rch and
eventually may facilitate clinical diagnosis and monitgyi
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