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Abstract —We have combined methods from volume visualization and data analysis to support better diagnosis and treatment of
human retinal diseases. Many diseases can be identi�ed by ab normalities in the thicknesses of various retinal layers captured
using optical coherence tomography (OCT). We used a support vector machine (SVM) to perform semi-automatic segmentation of
retinal layers for subsequent analysis including a comparison of layer thicknesses to known healthy parameters. We have extended
and generalized an older SVM approach to support better performance in a clinical setting through performance enhancements and
graceful handling of inherent noise in OCT data by considering statistical characteristics at multiple levels of resolution. The addition of
the multi-resolution hierarchy extends the SVM to have “global awareness.” A feature, such as a retinal layer, can therefore be modeled
within the SVM as a combination of statistical characteristics across all levels; thus capturing high- and low-frequency information.
We have compared our semi-automatically generated segmentations to manually segmented layers for veri�cation purpos es. Our
main goals were to provide a tool that could (i) be used in a clinical setting; (ii) operate on noisy OCT data; and (iii) isolate individual
or multiple retinal layers in both healthy and disease cases that contain structural deformities.

Index Terms —support vector machine, segmentation, image analysis, retinal, optical coherence tomography, volume visualization,
image processing.

1 INTRODUCTION

Advancements in medical imaging are facilitating the extraction of
accurate information from volumetric data making three-dimensional
(3D) imaging an increasingly useful tool for clinical diagnosis and
medical research. This development makes possible non-invasive ex-
amination and analysis of diseases by providing cliniciansinsight into
the morphology of disease within the body and how it changes over
time and through treatment. Common non-invasive imaging modali-
ties are magnetic resonance imaging (MRI) and computed tomography
(CT). Our efforts focus on the analysis and visualization ofvolumet-
ric OCT retinal data. OCT, described in [8], is an acquisition system
based on back-scattering of coherent light producing a stack of images
similar to MRI and CT. A light beam is directed into a patient's eye
where re�ected light is merged with a reference beam eliciting an in-
terference pattern that is used to gauge re�ectance at various depths
along the beam path. Quickly sweeping the beam across the retinal
surface, in a structured pattern, produces the image stack.

The ophthalmology �eld historically identi�ed diseases byexamin-
ing fundus images(captured using an ophthalmoscope showing the
retina, macula, and optic disc) and more recently by 2D thickness
maps of retinal layers. OCT has drastically improved the type of infor-
mation available to vision scientists allowing for a more intuitive view
as well as analysis of retinal layer information. Recently,3D OCT
imaging has gained popularity by giving practitioners moreinforma-
tion for their evaluations due to advancements in OCT technology. As
a result, we have built software that turns what is an otherwise quali-
tative evaluation into a quantitative form.

An automatic approach that segments, classi�es, and analyzes reti-
nal layers from 3D OCT would be ideal. However, the morphology
of retinal layers depends on the patient and the disease in question,
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which has caused problems for existing automatic retinal layer extrac-
tion methods [19]. To address this problem we have developeda semi-
automatic segmentation system in which the morphology of retinal
structures can be discovered and re�ned by a clinician. The clinician
interactively speci�es the location of a retinal layer on a few select
slices of the volume. This selection is then extrapolated throughout
the entire volume using a SVM classi�er in order to create a segmen-
tation. Once segmented, we provide visualizations and measurements
of the resulting segmentation to aid in disease diagnosis. The main
visualization interface is an interactive 3D volume rendering of the
segmented portions of the volume. We also provide more familiar vi-
sualizations such as a thickness map[1], currently a commondiagnosis
tool, and a 2D summed-intensity projection of the data resembling a
fundus image (feature included for completeness, but we show no im-
ages of it in this paper). Additionally, the user can computevolume
and thickness from layer segmentations, which have proven useful in
retinal disease diagnosis.

Speckle noiseis a normally distributed noise component introduced
by the data acquisition process. Our SVM approach, based on the
original work [24], considers a voxel's mean value and variance across
multiple resolutions in order to gracefully handle this noise and to give
the SVM a global perspective over feature shapes. Additionally, this
SVM is more tolerant of misclassi�cation by the user, variation be-
tween patients and diseases, and adapts well to the data variation con-
stituting retinal layer morphology.

Our main goals were to provide a tool that could (i) be used in a
clinical setting; (ii) operate on noisy OCT data; and (iii) isolate indi-
vidual or multiple retinal layers. Our main contributions to achieve
these goals are (i) integration of a hierarchical data representation into
SVM computations to counter noise and to better �nd retinal layers
and (ii) several speedups for improving SVM performance allowing
its practical use within a clinical setting.

1.1 Related Work

We evaluated a number of methods in order to �nd one that met our
needs for OCT retinal data. One commonly used volumetric data
segmentation method is a visualization technique that usesa one-
dimensional transfer function to map scalar intensity to color and
opacity [12]. This approach effectively segments regions based on
scalar intensity so that areas of interest are shown opaquely while other
regions are rendered transparently. Problems arise when different bi-
ological features share similar scalar values, manifesting as opaque
regions that should not be, and is exacerbated when noise is present.
Some improved methods address these problems [9, 10, 11, 12]. How-
ever, the user interface for these types of methods is typically too cum-



bersome for clinicians to use in everyday practice since they need inti-
mate knowledge of the intensity-to-color mapping in order to properly
understand the user interface. Our work is based on the work described
in [22], which describes how arti�cial intelligence algorithms can be
used to construct N-dimensional transfer functions through an intuitive
user interface.

Machine learning algorithms such as arti�cial neural networks have
been used in medical imaging research somewhat successfully [5, 7].
However, SVMs [3, 15, 4] have yielded more reliable results for
feature detection [2, 21, 16]. The method discussed in [23] com-
pares the use of neural networks and SVMs when constructing an
N-dimensional transfer function (mapping). In our case, theability
of SVMs to handle error, both in the form of speckle noise and user
misclassi�cation, makes them attractive.

Typical characteristics used to train machine learning algorithms
are scalar value, gradient magnitude, spatial location, orientation, and
neighborhood information. However, these characteristics can cause a
SVM to be sensitive to noise or objects that are structurallydeformed,
resulting in poor segmentations. We have found that carefulselection
of the characteristics de�ning the SVM input vector is typically bet-
ter than adding as many as possible. Too many characteristics dilute
the input vector by slowing down SVM computations and this fact of-
ten leads to unwanted segmentation results. Additionally,SVMs are
typically fed local data characteristics establishing a dependence on
the base resolution that ignores global feature trends thatare appar-
ent when looking at the data macroscopically. The method described
in [17] uses wavelets combined with a SVM classi�er to identify tex-
ture properties of image data. This concept is useful since the method
identi�es patterns with distinct texture characteristic on a more global
scale. The method described in [20] employs a multi-resolution SVM
kernel to account for macroscopic features and differs fromthe method
discussed in this paper in that we instead compute a multi-resolution
representation of the data.

Good examples of the current state of the art of 3D OCT visual-
ization and analysis are described in [25, 13]. To our knowledge, no
existing system for 3D OCT retinal visualization and analysis is as
complete and accurate as that presented in this paper.

1.2 OCT Retinal Data

Volumetric OCT data are captured by directing a light beam ata pa-
tient's retina in a gridded fashion. Back-scattered interference patterns
are captured through a complex feedback system, described in [26], to
produceb -scans similar to slices obtained via MRI, CT, or ultrasound.
However, neighboring slices are not registered to one another as they
are in MR imaging, due to naturally occurring unconscious eye move-
ments. During the scanning process, the clinician monitorsa realtime
display of theb -scans in order to eliminate low-frequency movements.
High-frequency vibrations are almost always present. Typically, the
clinician collects 80 to 200b -scans having dimensions ranging from
500� 250 to 1000� 500 pixels in size (corresponding to a region of
about 8mm� 8mm� 300mm in size).

Figure 1 shows a singleb -scan and also a cross section of several
b -scans showing the (mis-)alignment along the stack axis. Ina pre-
processing step, slices are registered using standard registration tech-
niques. Our clinicians use ImageJ [18], which computes rigid body
transformation (translation and rotation) to minimize thedifference
between neighboringb -scans. Figure 2 shows volume data sets of
three different retinal diseases compared to a healthy human retina.
Often, the disease type is obvious from a singleb -scan. However, a
time-series volumetric data set can show disease progress that is not
apparent from a single scan. In addition, a clinician can extract vol-
ume information of �uid, in the case of retinal detachment (�uid col-
lects beneath the photoreceptor layer), in order to gauge severity of a
disease before surgery and improvement after surgery.

For a normal healthy retina, the retinal surface and layers are well-
de�ned but obfuscated by noise inherent in OCT data. This is exac-
erbated by the fact that patient's move their eye while beingscanned
resulting in “spikes” inb -scans (as indicated in the left-side of the
top image of Figure 1). The clinician cannot always capture blemish-

b -scan (XY axes)

Un-aligned (ZY axes)

Aligned (ZY axes)

Fig. 1. Top image shows one OCT b -scan. Middle image shows 80 un-
aligned b -scans along the stack axis. Bottom image shows the scans
after alignment.

free volumes since the patient must not move their eye for about ten
seconds, which is not always possible due to natural involuntary eye
movements. In addition, we needed to build a system that could seg-
ment and analyze diseased retina. In diseased cases, the retinal layers
are not well-de�ned and can i) be missing entirely, ii) vary in thickness
across the retina, iii) be very thin, iv) be very thick, v) be very bumpy,
and vi) be erratic in morphology; all of which are handled effectively
by a SVM due to its �exibility.

2 SVM SEGMENTATION METHOD

The two main choices when implementing a SVM are the kernel and
input vector used to classify the feature space. We use a radial basis
function kernel since we assume it can represent our featurespace
well and also that speckle noise is normally distributed across the data.
Additionally, it allows non-linear separation of the space.

2.1 Feature Space

The data characteristics we include in our input vector are scalar in-
tensity, gradient, spatial location, mean of the neighbors, and variance.
The most obvious inclusion for a voxeli = f i; j ;kg is scalar intensity
fi and allows for ef�cient segmentation of regions having relatively
low standard deviation (noiseless data) and in our case, even though
we have substantial noise, this characteristic still proves useful. The
spatial locationpi = f xi ;yi ;zig of a voxel (considered with the other
characteristics) allows the differentiation between features having sim-
ilar data-distribution characteristics but residing in different locations.

The method described in [22] suggests that six neighbor intensity
values fi� 1; j� 1;k� 1 should be considered ati to counter noise. They
suggest that if a voxel value has been perturbed by noise, inclusion of
its neighbors will help determine the “actual value.” We found, in our
case, that this can lead to disconnected components due to those re-
gions having the appropriate neighbors, but not necessarily the correct
local data distribution. Our method instead uses as a parameter the
mean of the six neighbors, leading to improved results. We also in-
clude the variance (instead of the standard deviation) to include a data
distribution characteristic and additionally include gradient magnitude
to identify tissue boundaries.

In summary, for a voxeli at world-space locationpi with scalar
value fi having neighborsN = f i � 1; j � 1;k � 1g the data character-
istics we use for our input vector are:

fi ; (1)
xi ; (2)



Healthy Age-related macular degeneration Retinal detachment Glaucoma

Fig. 2. Comparison of different retinal diseases. The front portion of each volume has been clipped in order to reveal internal structures. Drusen,
extracellular deposits on the photoreceptor layer, are indicative of age-related macular degeneration. The retinal detachment data were captured
after surgery. All images are of the foveal region (the dip in the middle) except for the glaucoma case, which is of the optic nerve head.
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Thus, we include for each voxeli the scalar valuefi , locationpi , mean
value f̄i of the neighbors aroundi, variances 2

i aroundi, and the gra-

dientÑ f̂i at i using a local difference operator.

2.2 Multi-resolution Hierarchical SVM

Even in the presence of noise, a person can seemingly automatically
classify features by the distribution of data intensities in both local
neighborhoods and globally. When confronted with subtle changes in
these distributions, a person is able to perceive material (tissue) bound-
aries that are not necessarily well-de�ned by scalar value,but are in-
stead identi�ed by the transition of one noisy distributionto another.
To expand the operation of our SVM beyond the local scope of data
characteristics, we construct a hierarchy of representations of the vol-
ume and sample the mean value, gradient magnitude, and variance at
each level of this hierarchy in order to capture the distribution across
all levels and accumulate a weighted average of these samples prior to
inserting them into the SVM.

Our algorithm constructs a mipmap-like hierarchy having the full
resolution data as levell0 and successive levelsl i ; i > 0, having half
the resolution (in each dimension) of the previous levell i� 1, see Fig-
ure 3. The user speci�es “feature” and “background” voxels on l0 and
then speci�ed voxels are mapped to coarser levelsl i ; i > 0 in order to
determine the intensity value, mean value, gradient, and variance at
that level. Since each lower-resolution level voxel coversa larger re-
gion, we weigh each successive level's result to reasonablydiminish
its in�uence on the �nal value. Since each successive level in our hi-
erarchy is an eighth the size as the previous level, each level l receives
a weightwl = 1=8l . We allow the user to manipulate this value to
increase or further diminish the in�uence of lower resolution levels.
Additionally, we normalize the weights so thatå f lg wl = 1 to main-
tain the integrity of the values. Figure 4 shows the effect ofdifferent
hierarchy-level weights on SVM segmentations. To include the multi-
resolution hierarchy into our SVM computations, we appliedweighted
averaging each to scalar intensity, gradient, mean of the neighbors, and
variance characteristics. Thus, when obtaining characteristics for each
voxel (either to train or classify), we access the hierarchyat all levels
to produce a weighted average for each of those characteristics. We
did not include spatial location in this process since this characteristic
was not affected by multiple levels of detail. Additionally, we found
that the maximum number of levels was less than ten in most cases
since one of the primary axes would vanish by this point.

l0 l1

l2 l3

Fig. 3. We construct a mipmap-like hierarchy in order to compute vary-
ing levels of data distributions to sample as input to our SVM algo-
rithm. Top-left image shows a slice through a level having a resolution of
475� 150� 48. Remaining images show levels having a resolution half
the one before it. (The change in the “bump” is due to the in�ue nce of
neighboring slices in front and behind the shown slice.)

2.3 Feature Speci�cation

A user provides SVM training data through an intuitive interface in
order to create the “segmentation function.” Our system allows a user
to quickly classify features by using a small number of speci�cation
(training) points. We perform this speci�cation on axis-aligned 2D
slices of the volume similar to [22]. The user can slice a plane through
the volume to see a 2D intersection image and can “paint” on that plane
to mark points as “feature” or “background” as indicated by the green
and red marks, respectively, in Figure 4. This approach can be learned
quickly and has proven to be user-friendly within a clinicalsetting.
The user is required only to draw through regions of interestand to
indicate regions not of interest. Unfortunately, as the training data
set grows through painting, so does the complexity of the SVM. This
additional complexity leads to drastically longer segmentation times.

2.4 Speed Improvements

SVMs have a large computational cost that hinders their application
to an entire volume with real-time response behavior. We have im-
plemented several techniques that reduce computational cost for both
SVM training and classi�cation while having minimal effecton the
resulting segmentation quality. These methods are intended to mini-
mize clinician time needed to iterate between specifying training data
and viewing results. The methods include (i) training-datareduction;
(ii) evaluation on a single slice; (iii) checkerboard SVM sampling; (iv)
SVM multi-threading; and (v) clipping planes; each is discussed in
detail in the following sections.

Training-data reduction We found that users typically speci�ed
many training data points resulting in duplication of the data char-
acteristics fed into the SVM since our painting interface lays down
a “block” of speci�cation points whenever the user marks a region.
Thus, using every voxel marked by this block introduces somere-
dundancies resulting in substantial SVM computation penalties while
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Fig. 4. In�uence of multi-resolution hierarchy on SVM segme ntation.
Top-image uses standard local data characteristics while subsequent
segmentations accumulate data characteristics across the hierarchy us-
ing the weight shown. Each segmentation used the same training data
points as indicated by the green (feature) and red (background) marks.
As indicated in the bottom image, the presence of an overlying grid be-
comes noticeable when lower-resolution levels are weighted more. In
this case, the entire segmentation region should be connected, but in
general, this is not the case, for example, when segmenting � uid pock-
ets caused by retinal detachment.

not necessarily producing better results. A representative subsetR =
f r0; r1; r2; : : : ; r jRjg from the entire training setT = f t0; t1; t2; : : : ; t jTjg
is suf�cient to achieve nearly the same results while requiring much
less computation time. To obtain the subsetR � T, we implemented
a discrete form ofbest-candidate samplingwhere a random point
r0 = trand(jTj) is �rst added toR. Then, we repeatedly add toR the
point fromT that is farthest (in Cartesian distance) from all points cur-
rently in R. This process continues until (i) the number of pointsjRj
reaches a user speci�ed maximum threshold or (ii) the next point to be
added is closer to another point inR than a user-speci�ed minimum
distance. Both of these thresholds mitigate the growth of training data
by reducing the set of points used in a fashion that covers alltraining
regions well. We found in practice that having no maximum threshold
while setting a minimum distance of two voxels between training data
points inR has little to no effect on the resulting segmentation while
speeding up the SVM computation by nearly 60%.

Evaluation on a single slice Our software allows a user to test
the SVM segmentation on individual 2D slices to evaluate theresulting
segmentation for that slice. If needed, the user can modify the painted
regions or browse additional slices and subsequently applythe SVM
or further mark those slices. The application of the SVM to a single
slice requires only a few seconds (even for larger volumes of1000x�
500� 200 voxels). Once satis�ed with the segmentation on individual
slices, the user can apply the SVM to the whole volume.

Fig. 5. Regions isolated by clinicians are the photoreceptor layer (PRL)
and the full retinal thickness indicated by the boundary at the bottom of
the PRL and ending at the top of the inner limiting membrane.

Checkerboard SVM classi�cation After the SVM has been
trained, we apply the assumption that retinal features are much larger
than an individual voxel by using a checkerboard scheme that�rst
classi�es every other voxel by the SVM as either a feature or back-
ground. Each unclassi�ed voxel is then determined by �ndingthe ma-
jority classi�cation of its six neighbors. If the classi�cation is tied,
we then apply the SVM to that voxel to decide. We found the checker-
board scheme consistently reduces SVM classi�cation time by roughly
45% and consequently leads to smoother object boundaries and less
“orphaned” voxels (sparse individual misclassi�ed voxels).

SVM multi-threading Once trained, an SVM inherently classi-
�es each voxel independently of others. We take advantage ofthis by
incorporating multi-threaded SVM classi�cation in order to take ad-
vantage of popular multi-processor computers (the primarycomputer
used to run our software has four processor cores). We have found
this to do the expected by speeding up the SVM classi�cation step
according to the number of physical processors.

Clipping planes Clipping planes can be speci�ed to restrict the
SVM application to a sub-volume of the data. Our software allows a
user to specify axis-aligned clipping planes in order to specify a sub-
region (bounded by the clipping planes). This approach reduces the (i)
number of voxels to be processed, (ii) speci�cation time by the user,
and (iii) training data size while subsequently reducing the complexity
of the SVM resulting in both faster training and classi�cation. For reti-
nal data, clipping planes are useful for isolating broad regions around
relatively �at retinal layers of interest. Thus, while a simple concept,
this method is quite useful for our application.

3 LAYER THICKNESS ANALYSIS

Once a retinal layer has been isolated, measurements are computed
in order to track patient progress over time or to diagnose diseases
such as glaucoma, which can be identi�ed by retinal-layer volumes
outside normal parameters. Additionally, the �uid volume beneath the
photoreceptor layer caused by a retinal detachment can be measured
before and after surgery to insure that the surgery was a success and
additionally to monitor disease advancement.

Typically, a clinician isolates thefull retinal thicknessas the region
between the bottom of the photoreceptor layer and the top surface of
the retina in order to examine thickness maps, see Figure 5. Thickness
maps provide insight into gradually changing thickness andother ab-
normalities. The clinician also isolates the photoreceptor layer itself
in order to reveal thickness abnormalities. More details onthickness
map analysis of retinal layers can be found in [14, 6, 1].

4 RESULTS

Our software is currently being used by vision scientists atthe Uni-
versity of California, Davis Medical Center. We present work by two
clinicians to examine our software's practicality in a clinical setting
as well as the quality of segmentation results. We have applied our
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Fig. 6. Extracting the “healthy” thickness map from full retinal thickness
segmentations. Left-column indicates manual segmentation while right-
column is the SVM. Top-images show the segmentation speci�c ation on
a slice. Middle-images show the segmentation applied to the whole vol-
ume. Bottom-images show the extracted thickness maps. For thickness,
one voxel unit is approximately equal to 1um.

methods to data from patients having age-related macular degenera-
tion and retinal detachment and compare these to a healthy retina, see
Figure 2. We examined how well our method segments healthy reti-
nal layers, diseased retinal layers, and pockets of �uid by comparing
our semi-automatically generated segmentations to manualgenerated
segmentations.

We included a manual segmentation tool within our software al-
lowing a clinician to isolate retinal layers by de�ning top-and bottom-
bounding polylines on key frames throughout the volume. Thespeci-
�ed polylines are linearly interpolated between key framesin order to
segment every slice. We use this segmentation as a “gold standard”
to gauge the quality of our SVM-based segmentations. We asked one
clinician to de�ne three gold standards for our test data andfound
that this process required 30 minutes on the healthy data andup to 50
minutes on the diseased data to specify. Figure 6 shows a manually-
and SVM-generated segmentation as well as the process from (i) slice
segmentation to (ii) volume segmentation to (iii) full retinal thickness
map of the healthy data.

Data acquisition In practice, the clinician spends approximately
30 to 45 minutes with a patient in order to capture the 3D OCT data.
The patient must �ll out medical forms, is educated about equipment
being used, their pupils may be dilated, and is then positioned into
a chin rest for the scanning. The clinician then goes througha sys-
tematic process of instructing where to �xate enabling the capture of
several scans of various regions on their retina. The clinician evalu-
ates realtime 2D scan images in order to guarantee data quality. Once
scanning is �nished, the clinician proceeds with data processing and
visualization.

There is a series of steps involved in order to prepare the data for our

# Training SVM Training SVM Class.
Improvement Points Time (sec) Time (min)

(laptop) 2GHz Intel Core 2 Duo + 2GB main memory
None 2902 8.92 29.74
CH only 2902 8.73 14.74
CH+MR 2902 8.75 15.94
CH+RED 736 1.02 6.36
CH+MR+RED 732 1.00 6.59
(lab machine) Dual 3GHz Intel Xeon + 3GB main memory

None 2902 5.25 7.54
CH only 2902 5.05 3.76
CH+MR 2902 5.13 4.00
CH+RED 736 0.53 1.60
CH+MR+RED 732 0.52 1.64

Table 1. Improvement in�uence on full retinal thickness segmentation
performance as applied to the healthy data. Improvements tested were
checkerboard (CH), multi-resolution hierarchy (MR), and best candidate
reduction (RED). (Multi-threading was used in all tests.) All tests began
with the same training data. Tests were performed on a laptop having
a 2GHz Intel Core 2 Duo processor (two cores total) and 2GB of main
memory and also on a desktop computer used by the clinicians having
dual 3GHz Intel Xeon processors (four cores total) with 3GB of main
memory. The multi-resolution hierarchy used the weights wl = 1=8l . The
best candidate training data reduction included a minimum distance of
two voxels between training data.

software. The majority of time is spent exporting 2D slices from the
acquisition software and subsequently registering them toone another.
It takes approximately 15 minutes for a clinician to processall of the
collected patient data in this fashion.

Protocol We asked the two participating clinicians (identi�ed as
C1 and C2) to isolate the photoreceptor layer (PRL) and the full reti-
nal thickness (encompassing the space from the retinal surface up to
and including the PRL) using the painting interface on all three data
sets. At �rst, we allowed them to spend as much time as they thought
necessary to obtain adequate results and found that they spent around
20 to 30 minutes per feature segmentation. Then, we asked them to
repeat each feature segmentation in under ten minutes. Their results
are explained in detail over the following sections.

4.1 SVM Performance

We measured the running time for the checkerboard, multi-resolution
hierarchy, and best-candidate training-data reduction improvements.
We performed the tests on the healthy data using the “unlimited time”
SVM training data from clinician C1. We used two computers hav-
ing different amounts of main memory and processor capabilities, see
Table 1. Overall, we found that the checkerboard speedup slightly im-
proved segmentation quality while signi�cantly speeding up the entire
process. Thus, we left this option on for these tests.

Overall, we determined that the multi-resolution hierarchy had a
negligible effect on SVM training while having a SVM classi�cation
penalty of only 3% to 8% in all cases. We had expected the multi-
resolution hierarchy to impact the SVM classi�cation running time
signi�cantly more, but it seems that the SVM computations are far
more complex than the additional data accesses needed to implement
the hierarchy. The checkerboard improved performance by about 50%
in all cases, which is expected since it applies the SVM classi�ca-
tion to about half of the data. The best-candidate training data re-
duction (having a minimum distance of two voxels between training
points) improved SVM training performance by about 90% and fur-
ther reduced SVM classi�cation running time by about 60% while not
signi�cantly effecting the resulting segmentations. Quality measure-
ments are detailed in the next section.

Table 2 shows the running time results for all SVM segmentations
(as performed on the lab computer). The full thickness segmentations
required on average less than two minutes. The SVM classi�cation



time did not seem to directly correlate with the training data size. Ad-
ditionally, we found that clinicians tended to paint aggressively up
front when under a time constraint in order to avoid more iterations
later and, when under no time limit, the clinicians tended topaint
sparsely and iterate more often. This led to the ten-minute training
data being comparable or even larger than the unlimited-time training
data.

Time # Training # Reduced Total SVM
Constraint Points Points Time (min)

Healthy - Full Thickness
No Limit - C1 3348 838 1.90
No Limit - C2 5725 1264 1.53
10 mins - C1 4469 1046 1.49
10 mins - C2 16113 3631 3.48

Healthy - PRL
No Limit - C1 8636 2049 2.81
No Limit - C2 20569 4752 6.22
10 mins - C1 13232 3029 3.18
10 mins - C2 19135 4212 4.42

Macular Degeneration - Full Thickness
No Limit - C1 2831 676 0.78
No Limit - C2 3772 952 0.62
10 mins - C1 2236 556 0.36
10 mins - C2 3936 939 0.55

Macular Degeneration - PRL
No Limit - C1 7429 1753 1.43
No Limit - C2 6913 1635 1.30
10 mins - C1 7925 2013 1.53
10 mins - C2 14277 3213 1.40

Retinal Detachment - Full Thickness
No Limit - C1 4832 1138 1.80
No Limit - C2 4381 1027 1.66
10 mins - C1 4325 997 1.26
10 mins - C2 4574 1008 1.46

Retinal Detachment - Fluid
No Limit - C1 5058 1267 1.22
No Limit - C2 4623 1147 0.93
10 mins - C1 9598 2171 2.34
10 mins - C2 2985 742 0.89

Table 2. Measured running times for full retinal thickness segmentations
using multi-threading, clipping planes, checkerboard, multi-resolution hi-
erarchy, and best-candidate training-data reduction. C1 and C2 indicate
each clinician. Tests were performed on our “lab computer,” a dual pro-
cessor 3GHz Intel Xeon with 3GB of main memory (four processor cores
total). Multi-resolution hierarchy weights were set to wl = 1=8l and the
best-candidate training-data reduction had a minimum distance of two
voxels between training points. Measured running time without our im-
provements ranged between from 30 min to 2 hours in some cases.

4.2 SVM Segmentation Quality

We derived a thickness map from each segmentation by consider-
ing the distance (thickness) between the top and bottom surfaces of
the segmentation. To estimate the quality of our SVM method,we
compared thickness maps extracted from the gold-standard manually
generated segmentation to that obtained by our clinician'sSVM seg-
mentation. We computed the difference, at each point, between the
thickness maps as our error metric. We computed the mean and stan-
dard deviation of these differences and additionally founda useful
metric to be the value that 68% of the differences fell below,see
Table 3. Furthermore, we investigated the effect our checkerboard,
multi-resolution hierarchy, and best-candidate trainingdata reduction
schemes had on segmentation quality, see Table 4. We found ineach
of these cases that the resulting SVM segmentation better matched the
gold standard.

Prior to our addition of the multi-resolution hierarchy, our clini-

Time 68% are
Constraint less than Mean STD

Healthy - Full Thickness
No Limit - C1 3.233 3.875 10.288
No Limit - C2 7.074 6.115 5.329
10 mins - C1 4.318 4.293 7.285
10 mins - C2 5.188 4.563 4.496

Healthy - PRL
No Limit - C1 3.829 5.048 8.119
No Limit - C2 3.746 4.983 8.063
10 mins - C1 3.813 4.868 7.009
10 mins - C2 6.811 8.712 11.434

Macular Degeneration - Full Thickness
No Limit - C1 4.322 3.331 2.617
No Limit - C2 3.13 2.604 2.076
10 mins - C1 3.063 2.748 4.227
10 mins - C2 2.443 2.036 1.684

Macular Degeneration - PRL
No Limit - C1 6.049 5.061 4.428
No Limit - C2 5.502 4.614 3.739
10 mins - C1 4.93 4.431 4.575
10 mins - C2 5.695 4.751 4.114

Retinal Detachment - Full Thickness
No Limit - C1 3.986 3.451 3.427
No Limit - C2 4.512 3.693 3.018
10 mins - C1 5.111 4.263 4.038
10 mins - C2 5.594 4.842 5.051

Retinal Detachment - Fluid
No Limit - C1 7.34 4.895 6.438
No Limit - C2 7.21 4.865 6.16
10 mins - C1 7.78 4.901 5.694
10 mins - C2 9.63 5.9 6.675

Table 3. Comparison of SVM segmentations to gold-standard manual
segmentations. C1 and C2 indicate each clinician. The values in the ta-
ble indicate the thickness difference in voxel units between the SVM and
manual segmentations. The 68%metric states that 68%of the thickness
differences are less than the value speci�ed in the table. La yer thick-
nesses typically range from 30 to 100 voxel units depending upon the
disease.

cians had dif�culty isolating the PRL in many patient cases due to the
PRL being thin (< 30 voxels) and the local data characteristics used
in standard SVM computations were not able to capture the “thin”
morphology of the PRL. With the addition of the multi-resolution hi-
erarchy, we are now able to isolate the PRL accurately. This is due
to the ability of the hierarchy to examine lower-resolutionlevels (low-
frequency information) in order to �nd feature characteristics that de-
�ne the thin PRL. Figure 7 compares the manual segmentation with
the multi-resolution SVM segmentation of the PRL for the healthy
data. The multi-resolution SVM segmentation captures the foveal re-
gion well while additionally revealing retinal blood vessels.

Our SVM method performed well on both healthy and disease data.
The ability of the SVM to isolate arbitrary features, such asthe pocket
of �uid beneath the retina in the case of retinal detachment,furthers
the application of our method. Figure 8 shows the results of our �uid
segmentations for the retinal detachment data. We noticed that all of
the SVM segmentations underestimated the volume slightly.This is
apparent in the histogram of thickness-map differences also shown in
Figure 8. Additionally, we were especially pleased with theresults
in disease cases having retinal layer deformation. This wasprimarily
evident with the drusen on the PRL of the age-related maculardegen-
eration data. We obtained reasonable reproducibility among clinicians
as well as tolerable error, see Figure 9.



68% are
Improvement less than Average STD
None 5.598 5.335 6.043
CH only 5.451 5.143 5.689
CH+MR 5.433 5.021 5.339
CH+RED 4.386 3.898 3.793
CH+MR+RED 4.1 3.806 4.393

Table 4. Improvement in�uence on full retinal thickness segmentation
quality as applied to the healthy data set. The values in the table indi-
cate the thickness difference in voxel units between the SVM segmen-
tation computed using the improvement and the manual segmentation.
Improvements tested were checkerboard (CH), multi-resolution hierar-
chy (MR), and best candidate reduction (RED). All tests began with the
same training data. The multi-resolution hierarchy used the weights
wl = 1=8l . The best-candidate training data reduction included a min-
imum distance of two voxels between training points. Improvements
tended to increase segmentation quality.

Fig. 7. Comparison between manual and multi-resolution SVM segmen-
tation of the PRL of the healthy data. Left-image shows gold standard
manual segmentation. Right-image shows the multi-resolution SVM
segmentation. Note how the SVM segmentation reveals blood vessels
and better indicates the location of the fovea (red area in the middle).
The difference in how the manual and SVM segmentations handle blood
vessels manifested as voxel difference error in our thickness maps.

5 CONCLUSION AND FUTURE RESEARCH

We used a combination of volume visualization and data analysis tech-
niques to better diagnose and subsequently treat retinal diseases. We
have found that applying volume visualization techniques to 3D retina
image data collected in a clinical setting has achieved success by re-
vealing subtle features that standard diagnosis procedures miss as well
as providing accurate quantitative measurements of retinal structures.

This tool is currently being used in a clinical environment and is
continually providing insight into challenging retinal visualization and
analysis problems. We found that handling noise is a dif�cult task
when training and using any type of machine learning algorithm for
segmentation. We plan to investigate image �ltering techniques to re-
duce speckle noise prior to SVM processing. We also plan to create
training data that can be applied to multiple volumes eliminating the
need to retrain the SVM for new patients. Our method shows repro-
ducibility among different clinicians and yields good accuracy. The
primary differentiating factor between clinicians is their interpreta-
tion as to where a feature begins and ends, which is better controlled
through a clinical protocol. Our method currently producesdesirable
results in about ten minutes. This is a signi�cant improvement over
past machine learning applications to volumetric segmentations.

The most prominent drawback from our method is that the SVM
mis-classi�es some voxels resulting in scattered noise. This is notice-
able in the thickness maps shown in Figure 9. However, the clinicians
are aware of this issue and are willing to cope with it (by weighting

Fig. 8. Isolation of �uid beneath retina from retinal detach ment data.
Top-left image shows SVM segmentation from clinician C2 having a
ten minute time constraint. Top-right image shows associated thickness
map. Bottom-image shows the histogram of thickness map differences
between the manual and SVM segmentations for all �uid SVM seg men-
tations. SVM segmentation consistently slightly underestimated the �uid
volume as compared to the manually speci�ed segmentation. W e no-
ticed that this was because the manually speci�ed polylines were placed
on the layer boundary as opposed to just inside of it, which is how the
SVM identi�es the region.

the hierarchical levels differently) due to the enormous time savings
involved with using the SVM over other methods.

As a result of this work, vision scientists are using this software
to provide quantitative information useful in treatment planning that
is not otherwise available. It is certain to contribute to research and
eventually may facilitate clinical diagnosis and monitoring.
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